Published on in Vol 3, No 2 (2016): Jul-Dec
This is a member publication of UC Davis - Shields Library, Davis, CA, USA
Journals
- Killian M, Buchowski M, Donnelly T, Burnette W, Markham L, Slaughter J, Xu M, Crum K, Damon B, Soslow J. Beyond ambulation: Measuring physical activity in youth with Duchenne muscular dystrophy. Neuromuscular Disorders 2020;30(4):277 View
- Catal C, Akbulut A. Automatic energy expenditure measurement for health science. Computer Methods and Programs in Biomedicine 2018;157:31 View
- Tambuyzer E, Vandendriessche B, Austin C, Brooks P, Larsson K, Miller Needleman K, Valentine J, Davies K, Groft S, Preti R, Oprea T, Prunotto M. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nature Reviews Drug Discovery 2020;19(2):93 View
- Pires I, Felizardo V, Pombo N, Drobics M, Garcia N, Flórez-Revuelta F. Validation of a method for the estimation of energy expenditure during physical activity using a mobile device accelerometer. Journal of Ambient Intelligence and Smart Environments 2018;10(4):315 View
- Fergus P, Hussain A, Hearty J, Fairclough S, Boddy L, Mackintosh K, Stratton G, Ridgers N, Al-Jumeily D, Aljaaf A, Lunn J. A machine learning approach to measure and monitor physical activity in children. Neurocomputing 2017;228:220 View
- Liu Y, Qu H, Wenocur A, Qu J, Chang X, Glessner J, Sleiman P, Tian L, Hakonarson H. Interpretation of Maturity-Onset Diabetes of the Young Genetic Variants Based on American College of Medical Genetics and Genomics Criteria: Machine-Learning Model Development. JMIR Biomedical Engineering 2020;5(1):e20506 View
- Visibelli A, Roncaglia B, Spiga O, Santucci A. The Impact of Artificial Intelligence in the Odyssey of Rare Diseases. Biomedicines 2023;11(3):887 View