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Abstract

Background: Children with physical impairments are at a greater risk for obesity and decreased physical activity. A better
understanding of physical activity pattern and energy expenditure (EE) would lead to a more targeted approach to intervention.

Objective: This study focuses on studying the use of machine-learning algorithms for EE estimation in children with disabilities.
A pilot study was conducted on children with Duchenne muscular dystrophy (DMD) to identify important factors for determining
EE and develop a novel algorithm to accurately estimate EE from wearable sensor-collected data.

Methods: There were 7 boys with DMD, 6 healthy control boys, and 22 control adults recruited. Data were collected using
smartphone accelerometer and chest-worn heart rate sensors. The gold standard EE values were obtained from the COSMED
K4b2 portable cardiopulmonary metabolic unit worn by boys (aged 6-10 years) with DMD and controls. Data from this sensor
setup were collected simultaneously during a series of concurrent activities. Linear regression and nonlinear machine-learning–based
approaches were used to analyze the relationship between accelerometer and heart rate readings and COSMED values.

Results: Existing calorimetry equations using linear regression and nonlinear machine-learning–based models, developed for
healthy adults and young children, give low correlation to actual EE values in children with disabilities (14%-40%). The proposed
model for boys with DMD uses ensemble machine learning techniques and gives a 91% correlation with actual measured EE
values (root mean square error of 0.017).

Conclusions: Our results confirm that the methods developed to determine EE using accelerometer and heart rate sensor values
in normal adults are not appropriate for children with disabilities and should not be used. A much more accurate model is obtained
using machine-learning–based nonlinear regression specifically developed for this target population.

(JMIR Rehabil Assist Technol 2016;3(2):e7) doi: 10.2196/rehab.4340
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Introduction

Accelerometry-based algorithms quantifying the energy
estimation (EE) or calories-out of users and measuring physical
activity of healthy populations are becoming popular in the
consumer electronics market [1,2,3]. Smartphone apps and

devices such as Fitbit, Jawbone Up, Nike+ Fuelband, Microsoft
Band, and Apple Watch use underlying accelerometer sensors
and machine-learning algorithms developed on a pool of healthy
adults to give real-time EE estimates. Many of these algorithms
rely on fusing heart rate measurements with accelerometer
readings. It is tempting to use similar algorithms to quantify the
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EE of children with disabilities. However, to the best of our
knowledge, there has been limited effort to validate application
of machine-learning–based EE algorithms for pediatric patients
with muscular dystrophy. A better understanding of real-world
community-level physical activity patterns and EE would lead
to more targeted interventions to combat obesity and decreased
physical activity in this population.

Different measuring techniques have been used in disabled
populations including questionnaires, activity diaries, heart rate
monitoring, motion sensors (eg, pedometers, accelerometers),
indirect calorimetry, and doubly labeled water. Activity
questionnaires and diaries, while inexpensive, are time
consuming, rely on recall and reporting by the individual, and
have been shown to be inaccurate, especially in children [4,5].
Indirect and direct calorimetry cannot be used in home and
outdoor scenarios and are restricted to clinical settings. In
healthy normal populations, heart rate monitoring has been
shown to be less accurate in estimating EE for low-intensity
activities, which comprise the majority of the activity for
disabled populations [4,5]. Accelerometers are more accurate
for nondisabled populations because they measure activities
across several planes allowing measurements of the duration,
frequency, and intensity of physical activity. Disadvantages
include the inability to measure activities where the patient is
not moving the part of the body being monitored by the
accelerometer (eg, cycling, sitting, standing) [6]. Development
of EE algorithms utilizing inertial sensor (accelerometer) data
has thus far been largely restricted to healthy adult populations.
Sensor-based EE estimation relies on previously developed
general formulas, and no data exists for specific pediatric
populations including children with disabilities. Simply
extending basic EE estimation algorithms developed for healthy
adults for use with children with physical disabilities is
problematic.

In this study, we will identify important factors for EE
calculation and develop algorithms that accurately estimate EE
for a specific target pediatric population, children with Duchenne
muscular dystrophy (DMD). These data can then be used to
measure community habitual physical activity and EE using
sensors.

DMD is one of the most common hereditary (X-linked recessive)
neuromuscular disorders affecting the pediatric population and
also represents a prototypical muscle disorder with proximal
limb girdle weakness that results in a wide spectrum of physical
impairments. Its prevalence is approximately 1 per 3500 to 5000
boys, making it the most common and severe form of childhood
muscular dystrophy. Boys with DMD are usually confined to
a wheelchair by 10 years of age and have a median life
expectancy of 30 years [7]. Muscle weakness, followed by
muscle and tendon retractions and joint deformities, causes gait
impairment in patients with DMD, leading to compensatory
movements and gait deformation. The compensatory movements
occur because of the selection of possible synergic movements
on hip, knees, and ankles and the development of new motor
strategies used to allow the maintenance of ambulation [8].

The aim of this work is to test the efficiency of existing
regression models (originally built based on data from healthy

population samples) on children with disabilities. Since boys
with muscular disability (and DMD in particular) perform
compensatory movements to walk and have a different body
mass composition, it is possible that this population requires a
specific model rather than reusing normal models. Existing
works have targeted studying resting energy expenditure (REE)
in DMD patients and report it to be significantly lower than
controls of similar population [9]. Elliott et al [10] predicted
REE using existing equations based on anthropomorphic features
and fat-free mass. Souza et al [11] estimated EE during
ambulatory activities for a study of 3 patients using a linear
formula based on heart rate.

Methods

Subjects
There were 7 subjects with DMD aged 6 to 10 years recruited
from the regional neuromuscular clinic at the UC Davis Medical
Center, and 6 control children and 23 healthy adults were
recruited locally. Subjects completed an informed written
consent approved by the Institutional Review Board of the
University of California Davis.

Experimental Design
Subjects were asked to perform a series of activities in our
exercise laboratory at UC Davis while being monitored by an
accelerometer, a heart rate monitor, and the COSMED K4b2
(COSMED USA) metabolic system. For accelerometer
measurements, we used smartphone devices placed in a waist
pack and oriented in a standardized position. A chest strap was
used for the heart rate monitor.

Exercise Protocol
Before each test, the COSMED K4b2 components were
calibrated according to the manufacturer’s instructions. Subjects
were then fitted with the pack containing the phone
(accelerometer) and the COSMED K4b2 metabolic system.
Subjects were asked to perform the following activities, one
right after the other, in the ordered listed, with approximately
1 minute rest between the walking protocols:

• 3 minutes of lying supine on an exam table
• 3 minutes of sitting
• 50-meter slow-paced walk (lasting approximately 1-2

minutes)
• 50-meter typical comfortable speed walk (45-60 sec)
• 50-meter fast walk (20-60 seconds)

Speeds were chosen based on ratings from the the OMNI scale
of perceived exertion with easy walking rated as 0 to 2 or “not
tired at all,” medium pace as 2 to 4 or “getting a little tired,”
and fast walking pace as 4 to 6 or “getting more tired.” The final
activity was a 6-minute walking test. Cones were set up 25
meters apart in the hallway and the children walked as fast as
possible back and forth between the cones for 6 minutes. Heart
rate (using a Polar heart rate monitor), oxygen consumption,
carbon dioxide production, respiratory exchange ratio (RER),
and ventilation rate were continuously monitored.

Data from the COSMED metabolic system were averaged over
the 30 to 60 seconds of each collection period. Energy
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expenditure was calculated using the following equation:
COSMED K4b2 EE (kcal/min)=([1.2285*RER]+3.821)*VO2

where VO2 is the oxygen consumption in liters per minute. All
data were processed according to the following procedures:

1. COSMED output was resampled to obtain per-second
estimates of EE and heart rate.

2. Smartphone sensors were oversampled at 4 Hz and then
downsampled to obtain higher frequency resolution (more
accurate sensor readings). Oversampling improves resolution
and reduces noise in the readings. Resampling was done to
obtain per-second estimates of accelerometer readings (Ax, Ay,
and Az relative to the x, y, and z axis of the smartphone).

3. Accelerometer readings were synced with the COSMED
readings using paper markers.

Local coordinates from the smartphone accelerometer readings
were translated into global coordinates (two components:
horizontal and vertical).

4. Additional information about subject measurements such as
age, height, and weight were used as attributes for training
data-mining algorithms and validating existing algorithms.

Machine Learning and Statistical Analysis
We used a bootstrap aggregation (bagging) ensemble technique
with reduced-error pruning regression tree as the underlying
classifier to predict EE [12-15]. The bagging ensemble technique
is presented here because it was superior to models generated
using other techniques (eg, multilayer perceptron, support vector
machines, linear regression, naïve Bayes, and reduced-error
pruning regression trees). The bagging technique is an ensemble
meta-algorithm to improve the stability and accuracy in
statistical regression obtained by regression tree. The regression
tree was built using information-theoretic criterion for selecting
the nodes. Once the tree is built, reduced-error pruning is used,
where each node, beginning with the leaves, is replaced with
its most popular class. We divided the data for the model into
n=10 folds, where, n−1 folds are for supervised learning and
one fold is used to test the model for errors. The the value of
errors obtained in a fold is added to the weights of the nodes of

the next fold in the training set. A 10-fold cross validation was
used to evaluate the model in order to ensure that the model
was tested on data that it had not seen while training to minimize
chance for overfitting. Data processing was done in MATLAB
version 8.1.0.604 (R2013a) (MathWorks), and data mining
(machine-learning algorithms) was done using Weka (Waikato
Environment for Knowledge Analysis) software version 3.6.10.

Existing Algorithms
We used generalized nonlinear equations [16] originally
developed based on the Tritrac-R3D accelerometer and verified
with Actigraph, where H and V are the horizontal and vertical
accelerometer-based counts, respectively, for the k-th minute
and a, b, p1, and p2 are the generalized parameters that are
modeled based on the subject’s gender (p1=male, p2=female)
and mass in kg (Figure 1).

The resulting activity energy expenditure (EEact) is the amount
of energy expended in kJ above resting energy expenditure
(NOR-CHEN). For comparison with normal adults, we used a
model developed from experiments on 23 healthy people. The
model to estimate EE in healthy adults combined accelerometer
and heart rate measurements; a protocol similar to the one
outlined in this paper was followed for normal adults: obtaining
sensor values and COSMED readings. In that analysis, two
models were developed: one using linear regression (NOR-LIN)
and the other using ensemble bagging technique over normal
adults’ data (NOR-ENS). Further details of the healthy adult
EE study are the subject of a different paper currently under
review. Based on ambulatory data collected from young
controls, we develop linear (regression) and nonlinear
(machine-learning–based) models for EE estimation. YOU-LIN
refers to the linear regression model developed based on young
controls data and YOU-ENS refers to the model built on
regression trees based on reduced-error pruning.

Results

Subject Characteristics
Physical characteristics of the subjects are shown in Table 1.
All subjects completed the study protocol without any problems.

Figure 1. Resulting activity energy expenditure (EEact) using generalized nonlinear equation.
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Table 1. Characteristics of subjects in the study.

Adult controls

n=22

mean (SD)

Child controls

n=6

mean (SD)

DMD boys

n=7

mean (SD)

Attributes

37.41 (13.61)8.58 (1.35)8.30 (1.70)Age, year

170.42 (8.51)129.40 (0.09)121.41 (10.43)Height, cm

73.52 (15.32)26.25 (4.01)28.72 (5.84)Weight, kg

25.14 (3.90)15.69 (0.33)19.32 (2.14)BMI, kg/m2

—508.3 (57.5)120.69 (16.34)Fitness: 6 min walk test, m

Table 2. Characteristics of the subsets of adult controls.

Seniors

mean

Middle age

mean

Youth

mean

Characteristics

54.9434.5123Age, years

73.2875.6269Weight, kg

167.55171.54171.80Height, cm

The adult controls were subsequently divided into three
subgroups (see Table 2) to represent youth (aged 13-27 years),
middle age (aged 28-50 years), and seniors (aged 50 years and
older).

In our prior conference publication [17], we referred only to
adult controls (n=22). The difference in population size between
adults and boys with DMD could lead to potential bias, so we
added control children of the same age group and divided the
adult controls into three groups for comparison.

Feature Selection
The goal of feature selection is to reduce the number of attributes
used in the model and understand the predictive power of the
original set of attributes. Correlation feature selection (CFS)
was used to identify a subset of attributes for reduction of input
attributes [18]. Age; height; weight; heart rate; and horizontal,
vertical, and net acceleration measurements were retained, while
BMI, recovery heart rate, and 6-minute–walk test values were
removed. For the CFS technique used to determine subset of
important features, see Multimedia Appendix 1. Figure 2 shows
the plot of information gain (IG) for all of the attributes and
leads to following observations:

For boys with DMD, heart rate readings have the highest IG
contribution to EE estimation. Heart rate sensor outputs give
higher IG regarding EE than measures such as age, weight,
height, or accelerometer values.

The IG of heart rate measurements is similar for healthy children
(controls) and children with DMD, but it is lower for elder
controls in our study.

The accelerometer sensor has high correlation to EE in controls
across all ages but low correlation for boys with DMD. This
can be attributed to restricted ambulatory movement as well as
inadequacy of a single accelerometer in capturing body
acceleration of boys with DMD.

The demographic variables such as height, weight, and age have
low correlation to EE in healthy adults and boys with DMD but
high correlation for control children. This implies that knowing
the demographics of healthy children—but not boys with DMD
and adult controls—is helpful to EE estimation. We may need
to investigate this further with a larger population of control
children.

In the DMD group, accelerometer values (net A, horizontal A,
and vertical A) have lower relative information contributions
for determination of overall EE compared to normal adults
where accelerometer readings have higher impact than heart
rate. Other factors such as age, weight, and height have small
IG for both populations. The reduced predictive power of
smartphone accelerometer readings can be attributed to the
unique body movement of DMD patients, making it impossible
for a single accelerometer to capture their body motion
effectively.
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Figure 2. Relative information gain of different attributes on the energy estimation.

Ensemble Model
Using the data obtained from the DMD children, we identified
11 attributes (10 input features and 1 output attribute) and 7560
total instances to develop a new model of EE. The 10 input
features are as follows:

• Age
• Gender
• Weight
• Net acceleration (A) of accelerometer
• Net horizontal acceleration (H) of accelerometer
• Net vertical acceleration (V) of accelerometer
• Heart rate (HR)
• Product of HR and weight (HR×W)
• Product of net acceleration with weight (A×W)
• Product of net acceleration with height (A×H)

The attribute selection algorithm, based on CFS subset
evaluation and best first search [13], was used to reduce input
features and select the best features. Only 5 were selected and
used in final algorithm: age, HR, HR×W, A×W, and A×H. We
used the bagging ensemble technique with a reduced-error
pruning regression tree as the underlying regression model to
predict the EE values. The regression model generated from

this choice outperformed others in terms of output correlation
(91.21%) and mean absolute error (0.012): neural networks
(84.63%, 0.020), linear regression (81.12%, 0.019), decision
stump trees (58.01%, 0.025), stacking (0.03%, 0.030), and
additive regression (78.73%, 0.022). This newly developed
algorithm (DMD-ENS) builds a regression tree using
information variance and prunes it using reduced-error pruning
(with backfitting). DMD-NOR refers to the model built over
DMD population but using simple linear regression instead of
ensemble technique.

Comparison With Existing Algorithms
Results from the performance of the DMD-ENS and DMD-NOR
models compared with models built over normal adults are
shown in Table 3. It can be seen that existing adult models give
a very poor performance (only 40% correlation) and a root mean
square error (RMSE) of 0.05 to 0.75. Figure 3 gives a snapshot
of EE values obtained from our ensemble model versus the
actual reference values.

In our range of observations, the mean value of COSMED
readings over the sample population (over 1 second epoch) was
0.09. Thus, an error of 0.03 is 33% and significant. The RMSE
values are plotted in Figure 4.

Table 3. Performance comparison of DMD-ENS model with models for normal adults.

Root Mean Square ErrorCorrelation to EEModel

0.01791.20%DMD-ENS

0.03165.93%DMD-LIN

0.04840.62%NOR-CHEN [16]

0.05141.59%NOR-LIN

0.05437.91%NOR-ENS

0.72331.22%YOU-LIN

0.18246.75%YOU-ENS
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Figure 3. Plot showing energy estimation values obtained by COSMED and those estimated by ensemble model for DMD patients.

Figure 4. Bar chart showing root mean square error obtained using different models.

Discussion

Principle Findings
We found that existing models gave poor correlation (40%) and
high error in estimating EE for children with disability. Next,
we explored the role of innovative machine learning with data
collected from these sensors to obtain an accurate EE model.
The nonlinear machine-learning–based approach to estimate
EE for children with DMD uses reduced-error pruning for
regression trees with ensemble bagging models and gives high
correlation (91.21%) and an RMSE of 0.017.

In this work, we explored using machine-learning techniques
over data from accelerometer and heart rate sensors to obtain
an accurate EE model for children with disabilities. Compared
to the EE data obtained from the COSMED K4b2, EE estimation
based on our proposed model (DMD-ENS) has high correlation
and can be obtained by simple body-worn accelerometer and
heart rate sensors, which are becoming more and more popular
with new emerging wearable devices such as Fitbit, Apple
Watch, and Microsoft Band. Although these devices use

proprietary algorithms, the algorithms are based on
machine-learning models built for different activities of daily
living [19]. In our prior work, we have shown that the
machine-learning models developed in the lab can outperform
these algorithms for specific ambulatory movements [20]. The
poor performance of algorithms for the healthy population (only
40% correlation) indicates that these devices are not ready to
use for measuring physical activity in populations with muscular
dystrophy. The high correlation of a custom machine-learning
model built over a dataset from children with disabilities,
however, shows feasibility of developing population-specific
models for EE estimation. In our future work, we would like to
conduct trials over a large sample size with a larger set of
ambulatory activities.

While this single model appears to work across a range of
activities in a clinical setting, further investigation into the
validity of this EE estimation model for daily activities outside
of the clinic is needed. We observed that the existing models,
developed based on adult populations, do not provide accurate
levels of EE estimates. When we built regression models on
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healthy children (controls), we realized that these models do
not extend to children with disabilities. It is not merely the age
of subjects but also their gait and other aberrations which affect
EE for populations with muscular dystrophy. This confirms our
assertion that population-specific models are required for EE
estimation and a generic framework will not work. We also
need to expand our population base to include children with
other forms of muscular dystrophy to see if our proposed model
scales well to those populations.

Further investigation into the bodily placement of multiple
sensors will add to the information gained by sensors in specific
bodily locations. Boys with DMD perform a high number of
compensatory movements to walk and cover shorter distances;
it would be possible to infer that using multiple accelerometers
would detect such movements and this could be a confounding
factor. In this study, we placed a single accelerometer sensor at
the waist of the boys with DMD and found that waist
acceleration is not a good predictor for EE. It is conceivable
that information from multiple sensors will increase accuracy
of this EE model for disabled populations depending on the
particular conditions of the disability and impairment. Sensors
placed on multiple body locations may be able to capture all
dimensions of body motion and energy expenditure. Recent
work [8] uses videotape analysis of DMD patients to develop

a functional evaluation scale of gait for DMD. Sensor-based
models can be used to augment functional evaluation scales in
understanding progression of the disease.

Most of the participants found the sensors easy to use and
unobtrusive and would be willing to wear them on a daily basis
as a tool to monitor physical activity and energy balance as part
of their treatment program.

Limitations
Sample size was small due to the limited size of the DMD
population accessible and willing to participate in our study.
We plan to continue collecting data from DMD patients to
validate our results. A second limitation is that laboratory-based
measurements may not correlate to regular daily activity and
should be further validated in home or community settings.

Conclusion
The experiments show that machine-learning models developed
for healthy populations are inaccurate for children with
disabilities. An ensemble machine learning technique (bagging)
based on combined accelerometer and heart rate sensor readings
gave high accuracy (91.21%) to actual EE. The results are
encouraging and will be useful to track energy expenditure of
large patient populations in field activities.
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