Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?


Journal Description

JMIR Rehabilitation and Assistive Technologies is a PubMed-indexed journal that focuses on the development and evaluation of rehabilitation and assistive technologies, including assistive living.

As an open access journal, JMIR Rehabilitation and Assistive Technologies is read by both clinicians and patients. The journal fosuses on readable and applied science that reports the design and evaluation of health innovations and emerging technologies. It publishes original research, viewpoints, and reviews (both literature reviews and medical device/technology/app reviews). Articles are carefully copyedited and XML-tagged, ready for submission to PubMed Central.


Recent Articles:

  • Man accessing 'My Knee Exercise' website. Source: The authors / PlaceIt; Copyright: The Authors / PlaceIt; URL:; License: Licensed by JMIR.

    Exploring Attitudes and Experiences of People With Knee Osteoarthritis Toward a Self-Directed eHealth Intervention to Support Exercise: Qualitative Study


    Background: Knee osteoarthritis (OA) is a highly prevalent and debilitating condition. Exercise is a recommended treatment because of its effectiveness at improving pain and function. However, exercise is underutilized in OA management. Difficulty accessing health care has been identified as a key barrier to exercise uptake. Innovative and scalable methods of delivering exercise treatments to people with knee OA are needed. We developed a self-directed eHealth intervention to enable and encourage exercise participation. The effectiveness of this intervention on pain and function in people with knee OA is being evaluated in a randomized clinical trial. Objective: This study aimed to explore the attitudes and experiences of people with knee OA who accessed the self-directed eHealth intervention and the features perceived as useful to facilitate self-directed exercise. Methods: This was a qualitative study embedded within a randomized controlled trial. Individual, semistructured phone interviews were conducted with 16 people with knee OA who had accessed a 24-week eHealth intervention (website and behavior change SMS program) designed to support exercise participation. Interviews were audiorecorded, transcribed verbatim, and thematically analyzed using an inductive approach. Results: Five themes arose: (1) technology easy to use and follow (website ease of use, SMS ease of use), (2) facilitators to exercise participation (credible OA and exercise information, website features, prescribed exercises simple to do unsupervised, freedom to adapt the exercise to suit needs, influence of other health care experiences), (3) sense of support and accountability (SMS good reminder and prompt, accountable, SMS tone and automation could trigger negative emotions [eg, guilt or shame], inability to contact someone when needed), (4) positive outcomes (knee symptom improvements, confidence to self-manage, encouraged active living), (5) suggestions for real-world application (provided by a health professional preferred, should be provided at subsidized or low out-of-pocket cost). Conclusions: People with knee OA had mostly positive experiences with and attitudes towards the use of an eHealth intervention that supported exercise participation independent of a health professional. A human connection associated with the eHealth intervention appeared important.

  • Fruity Feet Gameplay. The player embodies the avatar feet and hands, using them to squish virtual fruit. The player must stomp on as much fruit as possible before the timer runs out. Players are awarded points based on how quickly and effectively they stomp on the fruit. Their score is tracked in real-time and they can keep track of previous high-scores to try and beat their old records. The virtual world is built to look as if players are on a farm to further immersion and provide an engaging game environment. Source: Image created by the Authors; Copyright: The Authors; URL:; License: Creative Commons Attribution (CC-BY).

    Virtual Reality in Pain Rehabilitation for Youth With Chronic Pain: Pilot Feasibility Study


    Background: In the field of pain, virtual reality (VR) technology has been increasingly common in the context of procedural pain management. As an interactive technology tool, VR has the potential to be extended beyond acute pain management to chronic pain rehabilitation with a focus on increasing engagement with painful or avoided movements. Objective: We outline the development and initial implementation of a VR program in pain rehabilitation intervention to enhance function in youth with chronic pain. Methods: We present the development, acceptability, feasibility, and utility of an innovative VR program (Fruity Feet) for pediatric pain rehabilitation to facilitate increased upper and lower extremity engagement. The development team was an interdisciplinary group of pediatric experts, including physical therapists, occupational therapists, pain psychologists, anesthesiologists, pain researchers, and a VR software developer. We used a 4-phase iterative development process that engaged clinicians, parents, and patients via interviews and standardized questionnaires. Results: This study included 17 pediatric patients (13 female, 4 male) enrolled in an intensive interdisciplinary pain treatment (IIPT) program, with mean age of 13.24 (range 7-17) years, completing a total of 63 VR sessions. Overall reports of presence were high (mean 28.98; max 40; SD 4.02), suggestive of a high level of immersion. Among those with multisession data (n=8), reports of pain (P<.001), fear (P=.003), avoidance (P=.004), and functional limitations (P=.01) significantly decreased. Qualitative analysis revealed (1) a positive experience with VR (eg, enjoyed VR, would like to utilize the VR program again, felt VR was a helpful tool); (2) feeling distracted from pain while engaged in VR; (3) greater perceived mobility; and (4) fewer clinician-observed pain behaviors during VR. Movement data support the targeted impact of the Fruity Feet compared to other available VR programs. Conclusions: The iterative development process yielded a highly engaging and feasible VR program based on qualitative feedback, questionnaires, and movement data. We discuss next steps for the refinement, implementation, and assessment of impact of VR on chronic pain rehabilitation. VR holds great promise as a tool to facilitate therapeutic gains in chronic pain rehabilitation in a manner that is highly reinforcing and fun.

  • A forequarter prosthesis created by leveraging digital technology. Source: Image created by the Authors; Copyright: The Authors (Trevor Binedell); URL:; License: Creative Commons Attribution (CC-BY).

    Leveraging Digital Technology to Overcome Barriers in the Prosthetic and Orthotic Industry: Evaluation of its Applicability and Use During the COVID-19 Pandemic


    Background: The prosthetic and orthotic industry typically provides an artisan “hands-on” approach to the assessment and fitting of orthopedic devices. Despite growing interest in digital technology for prosthetic and orthotic service provision, little is known of the quantum of use and the extent to which the current pandemic has accelerated the adoption. Objective: This study’s aim is to assess the use of digital technology in prosthetics and orthotics, and whether its use can help overcome challenges posed by the current COVID-19 pandemic. Methods: A web-based survey of working prosthetists, orthotists, and lower limb patients was conducted between June and July 2020 and divided into three sections: lower limb amputees, prosthetist and orthotist (P&O) currently using digital technologies in their practice, and P&O not using any digital technology. Input was sought from industry and academia experts for the development of the survey. Descriptive analyses were performed for both qualitative (open-ended questions) and quantitative data. Results: In total, 113 individuals responded to the web-based survey. There were 83 surveys included in the analysis (patients: n=13, 15%; prosthetists and orthotists: n=70, 85%). There were 30 surveys excluded because less than 10% of the questions were answered. Out of 70 P&Os, 31 (44%) used digital technologies. Three dimensional scanning and digital imaging were the leading technologies being used (27/31, 88%), primarily for footwear (18/31, 58%), ankle-foot orthoses, and transtibial and transfemoral sockets (14/31, 45%). Digital technology enables safer care during COVID-19 with 24 out of 31 (77%) respondents stating it improves patient outcomes. Singapore was significantly less certain that the industry's future is digital (P=.04). The use of virtual care was reported by the P&O to be beneficial for consultations, education, patient monitoring, or triaging purposes. However, the technology could not overcome inherent barriers such as the lack of details normally obtained during a physical assessment. Conclusions: Digital technology is transforming health care. The current pandemic highlights its usefulness in providing safer care, but digital technology must be implemented thoughtfully and designed to address issues that are barriers to current adoption. Technology advancements using virtual platforms, digitalization methods, and improved connectivity will continue to change the future of health care delivery. The prosthetic and orthotic industry should keep an open mind and move toward creating the required infrastructure to support this digital transformation, even if the world returns to pre–COVID-19 days.

  • Source: Pexels; Copyright: Pixabay; URL:; License: Licensed by JMIR.

    The Needs of Older Adults With Disabilities With Regard to Adaptation to Aging and Home Care: Questionnaire Study


    Background: The home environment is an important means of support in home-based care services for older people. A home environment that facilitates healthy aging can help older adults maximize their self-care abilities and integrate and utilize care resources. However, some home environments fail to meet the needs of older adults with disabilities. Objective: This paper aimed to study the needs of older adults with disabilities with respect to adaptation to aging, and to analyze the associations of individual factors and dysfunction with those needs. Methods: A questionnaire survey was administered to 400 older adults with disabilities from 10 communities in Ningbo City, Zhejiang Province, China. The survey was conducted from August 2018 to February 2019. Results: A total of 370 participants completed the survey. The proportion of participants with mild dysfunction was the highest (128/370, 34.59%), followed by those with extremely mild (107/370, 28.92%), moderate (72/370, 19.46%), and severe (63/370, 17.03%) dysfunction. The care needs of older adults with extremely mild and mild dysfunction pertained primarily to resting, a supportive environment, and transformation of indoor activity spaces. The care needs of older adults with moderate dysfunction pertained mainly to resting and renovation of bathing and toilet spaces. Factors influencing the needs of older adults with disabilities were dysfunction (P=.007), age (P=.006), monthly income (P=.005), and living conditions (P=.04). Conclusions: The needs of older adults with disabilities varied by the degree of dysfunction, and many factors influenced these needs in the community. These findings may provide a scientific basis for developing community-specific aging-related adaptation services for older adults with disabilities in the future.

  • Gait assessment using instrumented walkway and wearable devices. Source: Image created by the authors; Copyright: The Authors; URL:; License: Creative Commons Attribution (CC-BY).

    The Impact of Reducing the Number of Wearable Devices on Measuring Gait in Parkinson Disease: Noninterventional Exploratory Study


    Background: Measuring free-living gait using wearable devices may offer higher granularity and temporal resolution than the current clinical assessments for patients with Parkinson disease (PD). However, increasing the number of devices worn on the body adds to the patient burden and impacts the compliance. Objective: This study aimed to investigate the impact of reducing the number of wearable devices on the ability to assess gait impairments in patients with PD. Methods: A total of 35 volunteers with PD and 60 healthy volunteers performed a gait task during 2 clinic visits. Participants with PD were assessed in the On and Off medication state using the Movement Disorder Society version of the Unified Parkinson Disease Rating Scale (MDS-UPDRS). Gait features derived from a single lumbar-mounted accelerometer were compared with those derived using 3 and 6 wearable devices for both participants with PD and healthy participants. Results: A comparable performance was observed for predicting the MDS-UPDRS gait score using longitudinal mixed-effects model fit with gait features derived from a single (root mean square error [RMSE]=0.64; R2=0.53), 3 (RMSE=0.64; R2=0.54), and 6 devices (RMSE=0.54; R2=0.65). In addition, MDS-UPDRS gait scores predicted using all 3 models differed significantly between On and Off motor states (single device, P=.004; 3 devices, P=.004; 6 devices, P=.045). Conclusions: We observed a marginal benefit in using multiple devices for assessing gait impairments in patients with PD when compared with gait features derived using a single lumbar-mounted accelerometer. The wearability burden associated with the use of multiple devices may offset gains in accuracy for monitoring gait under free-living conditions. Trial Registration:

  • Source: freepik; Copyright: Paper photo created by jcomp; URL:; License: Licensed by JMIR.

    Data-Driven Personalization of a Physiotherapy Care Pathway: Case Study of Posture Scanning


    Background: Advanced sensor, measurement, and analytics technologies are enabling entirely new ways to deliver health care. The increased availability of digital data can be used for data-driven personalization of care. Data-driven personalization can complement expert-driven personalization by providing support for decision making or even by automating some parts of decision making in relation to the care process. Objective: The aim of this study was to analyze how digital data acquired from posture scanning can enhance physiotherapy services and enable more personalized delivery of physiotherapy. Methods: A case study was conducted with a company that designed a posture scan recording system (PSRS), which is an information system that can digitally record, measure, and report human movement for use in physiotherapy. Data were collected through interviews with different stakeholders, such as health care professionals, health care users, and the information system provider, and were analyzed thematically. Results: Based on the results of our thematic analysis, we propose three different types of support that posture scanning data can provide to enhance and enable more personalized delivery of physiotherapy: 1) modeling the condition, in which the posture scanning data are used to detect and understand the health care user’s condition and the root cause of the possible pain; 2) visualization for shared understanding, in which the posture scanning data are used to provide information to the health care user and involve them in more collaborative decision-making regarding their care; and 3) evaluating the impact of the intervention, in which the posture scanning data are used to evaluate the care progress and impact of the intervention. Conclusions: The adoption of digital tools in physiotherapy has remained low. Physiotherapy has also lacked digital tools and means to inform and involve the health care user in their care in a person-centered manner. In this study, we gathered insights from different stakeholders to provide understanding of how the availability of digital posture scanning data can enhance and enable personalized physiotherapy services.

  • Haptic Bracelets attached to lower limbs of participant living with Huntington's Disease. Source: Image created by the Authors; Copyright: The Authors; URL:; License: Creative Commons Attribution + Noncommercial + NoDerivatives (CC-BY-NC-ND).

    Rhythmic Haptic Cueing Using Wearable Devices as Physiotherapy for Huntington Disease: Case Study


    Background: Huntington disease (HD) is an inherited genetic disorder that results in the death of brain cells. HD symptoms generally start with subtle changes in mood and mental abilities; they then degenerate progressively, ensuing a general lack of coordination and an unsteady gait, ultimately resulting in death. There is currently no cure for HD. Walking cued by an external, usually auditory, rhythm has been shown to steady gait and help with movement coordination in other neurological conditions. More recently, work with other neurological conditions has demonstrated that haptic (ie, tactile) rhythmic cues, as opposed to audio cues, offer similar improvements when walking. An added benefit is that less intrusive, more private cues are delivered by a wearable device that leaves the ears free for conversation, situation awareness, and safety. This paper presents a case study where rhythmic haptic cueing (RHC) was applied to one person with HD. The case study has two elements: the gait data we collected from our wearable devices and the comments we received from a group of highly trained expert physiotherapists and specialists in HD. Objective: The objective of this case study was to investigate whether RHC can be applied to improve gait coordination and limb control in people living with HD. While not offering a cure, therapeutic outcomes may delay the onset or severity of symptoms, with the potential to improve and prolong quality of life. Methods: The approach adopted for this study includes two elements, one quantitative and one qualitative. The first is a repeated-measures design with three conditions: before haptic rhythm (ie, baseline), with haptic rhythm, and after exposure to haptic rhythm. The second element is an in-depth interview with physiotherapists observing the session. Results: In comparison to the baseline, the physiotherapists noted a number of improvements to the participant’s kinematics during her walk with the haptic cues. These improvements continued in the after-cue condition, indicating some lasting effects. The quantitative data obtained support the physiotherapists’ observations. Conclusions: The findings from this small case study, with a single participant, suggest that a haptic metronomic rhythm may have immediate, potentially therapeutic benefits for the walking kinematics of people living with HD and warrants further investigation.

  • Source: Image created by the Authors; Copyright: The Authors; URL:; License: Creative Commons Attribution (CC-BY).

    Usability and Acceptability of an App (SELFBACK) to Support Self-Management of Low Back Pain: Mixed Methods Study


    Background: Self-management is the key recommendation for managing nonspecific low back pain (LBP). However, there are well-documented barriers to self-management; therefore, methods of facilitating adherence are required. Smartphone apps are increasingly being used to support self-management of long-term conditions such as LBP. Objective: The aim of this study was to assess the usability and acceptability of the SELFBACK smartphone app, designed to support and facilitate self-management of non-specific LBP. The app provides weekly self-management plans, comprising physical activity, strength and flexibility exercises, and patient education. The plans are tailored to the patient’s characteristics and symptom progress by using case-based reasoning methodology. Methods: The study was carried out in 2 stages using a mixed-methods approach. All participants undertook surveys, and semistructured telephone interviews were conducted with a subgroup of participants. Stage 1 assessed an app version with only the physical activity component and a web questionnaire that collects information necessary for tailoring the self-management plans. The physical activity component included monitoring of steps recorded by a wristband, goal setting, and a scheme for sending personalized, timely, and motivational notifications to the user’s smartphone. Findings from Stage 1 were used to refine the app and inform further development. Stage 2 investigated an app version that incorporated 3 self-management components (physical activity, exercises, and education). A total of 16 participants (age range 23-71 years) with ongoing or chronic nonspecific LBP were included in Stage 1, and 11 participants (age range 32-56 years) were included in Stage 2. Results: In Stage 1, 15 of 16 participants reported that the baseline questionnaire was easy to answer, and 84% (13/16) found the completion time to be acceptable. Overall, participants were positive about the usability of the physical activity component but only 31% (5/16) found the app functions to be well integrated. Of the participants, 90% (14/16) were satisfied with the notifications, and they were perceived as being personalized (12/16, 80%). In Stage 2, all participants reported that the web questionnaire was easy to answer and the completion time acceptable. The physical activity and exercise components were rated useful by 80% (8/10), while 60% (6/10) rated the educational component useful. Overall, participants were satisfied with the usability of the app; however, only 50% (5/10) found the functions to be well integrated, and 20% (2/10) found them to be inconsistent. Overall, 80% (8/10) of participants reported it to be useful for self-management. The interviews largely reinforced the survey findings in both stages. Conclusions: This study has demonstrated that participants considered the SELFBACK app to be acceptable and usable and that they thought it would be useful for supporting self-management of LBP. However, we identified some limitations and suggestions useful to guide further development of the SELFBACK app and other mobile health interventions.

  • Consenting subject demonstrating the components of the AR Game. This is a picture of what the therapist sees. Source: Image created by the Authors; Copyright: The Authors; URL:; License: Creative Commons Attribution (CC-BY).

    Acceptability of a Mobile Phone–Based Augmented Reality Game for Rehabilitation of Patients With Upper Limb Deficits from Stroke: Case Study


    Background: Upper limb functional deficits are common after stroke and result from motor weakness, ataxia, spasticity, spatial neglect, and poor stamina. Past studies employing a range of commercial gaming systems to deliver rehabilitation to stroke patients provided short-term efficacy but have not yet demonstrated whether or not those games are acceptable, that is, motivational, comfortable, and engaging, which are all necessary for potential adoption and use by patients. Objective: The goal of the study was to assess the acceptability of a smartphone-based augmented reality game as a means of delivering stroke rehabilitation for patients with upper limb motor function loss. Methods: Patients aged 50 to 70 years, all of whom experienced motor deficits after acute ischemic stroke, participated in 3 optional therapy sessions using augmented reality therapeutic gaming over the course of 1 week, targeting deficits in upper extremity strength and range of motion. After completion of the game, we administered a 16-item questionnaire to the patients to assess the game’s acceptability; 8 questions were answered by rating on a scale from 1 (very negative experience) to 5 (very positive experience); 8 questions were qualitative. Results: Patients (n=5) completed a total of 23 out of 45 scheduled augmented reality game sessions, with patient fatigue as the primary factor for uncompleted sessions. Each patient consented to 9 potential game sessions and completed a mean of 4.6 (SE 1.3) games. Of the 5 patients, 4 (80%) completed the questionnaire at the end of their final gaming session. Of note, patients were motivated to continue to the end of a given gaming session (mean 4.25, 95% CI 3.31-5.19), to try other game-based therapies (mean 3.75, 95% CI 2.81-4.69), to do another session (mean 3.50, 95% CI 2.93-4.07), and to perform other daily rehabilitation exercises (mean 3.25, 95% CI 2.76-3.74). In addition, participants gave mean scores of 4.00 (95% CI 2.87-5.13) for overall experience; 4.25 (95% CI 3.31-5.19) for comfort; 3.25 (95% CI 2.31-4.19) for finding the study fun, enjoyable, and engaging; and 3.50 (95% CI 2.52-4.48) for believing the technology could help them reach their rehabilitation goals. For each of the 4 patients, their reported scores were statistically significantly higher than those generated by a random sampling of values (patient 1: P=.04; patient 2: P=.04; patient 4: P=.004; patient 5: P=.04). Conclusions: Based on the questionnaire scores, the patients with upper limb motor deficits following stroke who participated in our case study found our augmented reality game motivating, comfortable, engaging, and tolerable. Improvements in augmented reality technology motivated by this case study may one day allow patients to work with improved versions of this therapy independently in their own home. We therefore anticipate that smartphone-based augmented reality gaming systems may eventually provide useful postdischarge self-treatment as a supplement to professional therapy for patients with upper limb deficiencies from stroke.

  • Source: Mira Rehab; Copyright: Mira Rehab; License: Licensed by the authors.

    Rehabilitation Exergames: Use of Motion Sensing and Machine Learning to Quantify Exercise Performance in Healthy Volunteers


    Background: Performing physiotherapy exercises in front of a physiotherapist yields qualitative assessment notes and immediate feedback. However, practicing the exercises at home lacks feedback on how well patients are performing the prescribed tasks. The absence of proper feedback might result in patients performing the exercises incorrectly, which could worsen their condition. We present an approach to generate performance scores to enable tracking the progress by both the patient at home and the physiotherapist in the clinic. Objective: This study aims to propose the use of 2 machine learning algorithms, dynamic time warping (DTW) and hidden Markov model (HMM), to quantitatively assess the patient’s performance with respect to a reference. Methods: Movement data were recorded using a motion sensor (Kinect V2), capable of detecting 25 joints in the human skeleton model, and were compared with those of a reference. A total of 16 participants were recruited to perform 4 different exercises: shoulder abduction, hip abduction, lunge, and sit-to-stand exercises. Their performance was compared with that of a physiotherapist as a reference. Results: Both algorithms showed a similar trend in assessing participant performance. However, their sensitivity levels were different. Although DTW was more sensitive to small changes, HMM captured a general view of the performance, being less sensitive to the details. Conclusions: The chosen algorithms demonstrated their capacity to objectively assess the performance of physical therapy. HMM may be more suitable in the early stages of a physiotherapy program to capture and report general performance, whereas DTW could be used later to focus on the details. The scores enable the patient to monitor their daily performance. They can also be reported back to the physiotherapist to track and assess patient progress, provide feedback, and adjust the exercise program if needed.

  • Source:; Copyright: Freepik; URL:; License: Licensed by JMIR.

    Optimizing Telehealth Experience Design Through Usability Testing in Hispanic American and African American Patient Populations: Observational Study


    Background: Telehealth-delivered pulmonary rehabilitation (telePR) has been shown to be as effective as standard pulmonary rehabilitation (PR) at improving the quality of life in patients living with chronic obstructive pulmonary disease (COPD). However, it is not known how effective telePR may prove to be among low-income, urban Hispanic American and African American patient populations. To address this question, a collaborative team at Northwell Health developed a telePR intervention and assessed its efficacy among low-income Hispanic American and African American patient populations. The telePR intervention system components included an ergonomic recumbent bike, a tablet with a built-in camera, and wireless monitoring devices. Objective: The objective of the study was to assess patient adoption and diminish barriers to use by initiating a user-centered design approach, which included usability testing to refine the telePR intervention prior to enrolling patients with COPD into a larger telePR study. Methods: Usability testing was conducted in two phases to identify opportunities to streamline and improve the patient experience. The first phase included a prefield usability testing phase to evaluate technical, patient safety, and environmental factors comprising the system architecture. This was followed by an ergonomic evaluation of user interactions with the bicycle, telehealth tablets, and connected wearable devices to ensure optimal placement and practical support for all components of the intervention. The second phase of research included feasibility testing to observe and further optimize the system based on iterative rounds of telePR sessions. Results: During usability and feasibility research, we identified and addressed multiple opportunities for system improvements. These included physical and environmental changes, modifications to accommodate individual patient factors, safety improvements, and technology upgrades. Each enrolled patient was subsequently identified and classified into one of the following 3 categories: (1) independent, (2) intermediate, or (3) dependent. This categorization was used to predict the level of training and support needed for successful participation in the telePR sessions. Feasibility results revealed that patients in the dependent category were unable to perform the rehab sessions without in-person support due to low technical acumen and difficulty with certain features of the system, even after modifications had been made. Intermediate and independent users, however, did exhibit increased independent utilization of telePR due to iterative improvements. Conclusions: Usability testing helped reduce barriers to use for two subsets of our population, the intermediate and independent users. In addition, it identified a third subset, dependent users, for whom the telePR solution was deemed unsuitable without in-person support. The study established the need for the development of standard operating procedures, and guides were created for both patients and remote respiratory therapists to facilitate the appropriate use of the telePR system intervention. Observational research also led to the development of standard protocols for the first and all subsequent telePR sessions. The primary goals in developing standardization protocols were to establish trust, ensure a positive experience, and encourage future patient engagement with telePR sessions.

  • Source: The Authors / Placeit; Copyright: University of Toronto / Placeit; URL:; License: Licensed by JMIR.

    Web-Based Health Coaching for Spinal Cord Injury: Results From a Mixed Methods Feasibility Evaluation


    Background: Individuals with spinal cord injury (SCI) are at high risk of experiencing secondary conditions like pressure injuries. Self-management programs may reduce the risk of complications, but traditional programs have proven to be insufficiently tailored to the needs of people with SCI. To overcome barriers to self-management support, a web-based, self-management program was developed for Canadians with SCI called SCI & U. Objective: This study aims to evaluate the feasibility and potential impact of the SCI & U program in the context of a mixed methods pilot study. Methods: The study followed an explanatory, sequential mixed methods design. Participants (N=11) were Canadians with SCI who had been living in the community for more than 1 year. Each took part in a self-paced, six-session self-management program guided by a trained peer health coach. During sessions, participants could discuss a health topic with their coach from a predefined list (eg, skin or bowel management). Quantitative data were gathered before and after program participation to assess program feasibility and impact. Feasibility measures included attrition rates, frequency of topics selected, and recorded goals, whereas impact measures included measures of self-efficacy (University of Washington Self-Efficacy Scale [UW-SES]), mood (Personal Health Questionnaire Depression Scale [PHQ-8]), secondary conditions (Spinal Cord Injury Secondary Conditions Scale [SCI-SCS]), and resilience (Spinal Cord Injury Quality of Life Resilience Scale [SCI-QOL-R]). Qualitative measures were based on postintervention interviews; these were designed to confirm and expand on quantitative Results: Of the 11 participants, 10 completed pre- and postassessments, and 6 coaching sessions. Sessions lasted between 31 and 81 min (average 55, SD 13), and the duration of the program ranged from 35 to 88 days (average 56, SD 23). Diet and exercise were selected as topics 40% (20/50 sessions with topics) of the time, whereas topics such as mental health, bladder management, pain, and bowel management were chosen less frequently. Results gathered before and after the pilot study demonstrated improvements with moderate effect sizes on the UW-SES and the electronic health literacy scale (ie, Hedges g>0.5). Effect sizes for measures of resilience (SCI-QOL-R), depression (PHQ-8), and secondary conditions (SCI-SCS) were small (ie, Hedges g>0.3). Qualitative results confirmed a common focus on diet and exercise, and defined coaches as sources of accountability, information, reassurance and affirmation, and emotional and technical support. Conclusions: Results demonstrated that a web-based self-management program is feasible and acceptable by Canadians with SCI. Results also indicated a web-based, peer-led self-management program may impact resilience, self-efficacy, mood, and secondary complications. Finally, results illuminated the role of the coach in facilitating behavior change. Future work seeks to validate results in the context of a randomized controlled trial.

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Latest Submissions Open for Peer-Review:

There are no articles available for open peer-review at this time. Please check back later.