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Abstract
Background: Parkinson disease (PD) is reported to be among the most prevalent neurodegenerative diseases globally,
presenting ongoing challenges and increasing burden on health care systems. In an effort to support patients with PD, their
carers, and the wider health care sector to manage this incurable condition, the focus has begun to shift away from traditional
treatments. One of the most contemporary treatments includes prescribing assistive technologies (ATs), which are viewed as a
way to promote independent living and deliver remote care. However, the uptake of these ATs is varied, with some users not
ready or willing to accept all forms of AT and others only willing to adopt low-technology solutions. Consequently, to manage
both the demands on resources and the efficiency with which ATs are deployed, new approaches are needed to automatically
assess or predict a user’s likelihood to accept and adopt a particular AT before it is prescribed. Classification algorithms
can be used to automatically consider the range of factors impacting AT adoption likelihood, thereby potentially supporting
more effective AT allocation. From a computational perspective, different classification algorithms and selection criteria offer
various opportunities and challenges to address this need.
Objective: This paper presents a novel hybrid multicriteria decision-making approach to support classifier selection in
technology adoption processes involving patients with PD.
Methods: First, the intuitionistic fuzzy analytic hierarchy process (IF-AHP) was implemented to calculate the relative
priorities of criteria and subcriteria considering experts’ knowledge and uncertainty. Second, the intuitionistic fuzzy deci-
sion-making trial and evaluation laboratory (IF-DEMATEL) was applied to evaluate the cause-effect relationships among
criteria/subcriteria. Finally, the combined compromise solution (CoCoSo) was used to rank the candidate classifiers based on
their capability to model the technology adoption.
Results: We conducted a study involving a mobile smartphone solution to validate the proposed methodology. Structure (F5)
was identified as the factor with the highest relative priority (overall weight=0.214), while adaptability (F4) (D-R=1.234)
was found to be the most influencing aspect when selecting classifiers for technology adoption in patients with PD. In this
case, the most appropriate algorithm for supporting technology adoption in patients with PD was the A3 - J48 decision tree
(M3=2.5592). The results obtained by comparing the CoCoSo method in the proposed approach with 2 alternative methods
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(simple additive weighting and technique for order of preference by similarity to ideal solution) support the accuracy and
applicability of the proposed methodology. It was observed that the final scores of the algorithms in each method were highly
correlated (Pearson correlation coefficient >0.8).
Conclusions: The IF-AHP-IF-DEMATEL-CoCoSo approach helped to identify classification algorithms that do not just
discriminate between good and bad adopters of assistive technologies within the Parkinson population but also consider
technology-specific features like design, quality, and compatibility that make these classifiers easily implementable by
clinicians in the health care system.
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Introduction
Background
Advances in the economy, health care, science, and technol-
ogy have significantly influenced demographics. Between
2000 and 2019, global average life expectancy increased by
over 6 years to 73.4 years; however, healthy life expectancy
has not kept pace [1]. Consequently, the years spent living
with illness or disease have increased, with approximately 1
in 3 adults suffering from multiple chronic conditions, and 3
in 4 older adults living with 1 or more chronic conditions [2].
This has added unsustainable pressure on society’s ability to
provide long-term economic care, promoting a renewed drive
for innovative treatment.

One initiative has been to seek efficiencies in health care
delivery through prescribing assistive technologies (ATs).
ATs typically support health care outside traditional settings,
aiding in remote monitoring of conditions, thereby promot-
ing the independence of individuals and caregivers. Older
users, however, who tend to be less familiar with technol-
ogy advancements, remain hesitant to readily adopt ATs as
a long-term, low-cost replacement for human care. Conse-
quently, low acceptance rates, along with the requirement
to update prescribed ATs as a condition evolves, remain a
significant challenge to widespread adoption [3].

One mitigation is to preassess adoption likelihood so that
the appropriate solutions are deployed, decommissioned, and
replaced accordingly over time. A research challenge exists
to appropriately identify and develop automated algorithms
that can assess adoption likelihood. This paper investigates
this challenge and extends our previous work, identifying
the most appropriate classification algorithms to support AT
assessment [4,5]. The novelty of this study also lies in the
use of an integrated intuitionistic fuzzy multicriteria decision-
making (MCDM) approach to dealing with this problem. This
approach addresses uncertainty better with the nonmember-
ship function [6], which helps better define the evaluations
of decision makers [7], and minimizes information loss in
operations with fuzzy numbers [8]. Specifically, we used
intuitionistic fuzzy analytic hierarchy process (IF-AHP) to
estimate initial criteria weights, intuitionistic fuzzy deci-
sion-making trial and evaluation laboratory (IF-DEMATEL)
to evaluate interrelations among criteria, and combined
compromise solution (CoCoSo) to rank classifiers. The study

uncovered factors influencing the design of algorithms that
can accurately prescribe AT. The results highlight scalability,
adaptability, and performance as key criteria alongside ease
of interpretation for confident deployment and the use of
transparent, white-box algorithms to enhance usability and
acceptance. The paper presents the finding using a case
study considering technology adoption among patients with
Parkinson disease (PD), which is a leading chronic condition
affecting approximately 10 million people, with the majority
of symptoms typcially developing after age 50 [9].

In this paper, we begin by presenting related works to
highlight the opportunities and challenges in this research
domain, then describe the proposed methodological approach.
Next, we present and critique the main findings of our work,
and finally consolidate these observations toward summariz-
ing the main scientific implications evidenced.
Review of the Literature
Statistical and machine learning (ML) approaches are
increasingly promising in technology adoption modeling
research. In particular, ML is vital in advancing and
validating theoretical frameworks of technology adoption and
improving their predictive power.

The most popular theories for technology adoption are
the Technology Acceptance Model (TAM) and the Unified
Theory of Acceptance and Use of Technology (UTAUT)
[10]. Both TAM and UTAUT suggest that technology use
is impacted by an individual’s behavioural intention to use
it. In the TAM, a person’s attitude to technology, determined
by perceived usefulness and perceived ease of use, is used
to measure intention to use [11]. UTAUT builds on this, in
addition to other theoretical frameworks. In UTAUT, four
constructs impacting intention to use are considered: (1)
performance expectancy, (2) effort expectancy, (3) social
influence, and (4) facilitating conditions. UTAUT addition-
ally considers constructs of age, gender, voluntariness, and
experience of use to temper expectations of intention to use
by the individual.

Historically, researchers in technology adoption have
considered 3 elements when modeling adoption: users,
technology, and environment. They have constructed these
elements within several frameworks mentioned above.
Although frameworks such as these have made signifi-
cant inroads in furthering our understanding of technology
adoption, they are not without limitations. Both TAM and
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UTAUT have been criticized for being overly simplistic and
focusing on a narrow perspective of individuals’ beliefs,
perceptions, and usage intention. Additionally, several studies
have highlighted that these theories no longer contribute
new knowledge or understanding to technology adoption.
Therefore, new ways of understanding technology adoption
are required [11].

Recently, technology adoption researchers have highligh-
ted an additional limitation of frameworks, including TAM
and UTAUT. Specifically, these models have been developed
focusing on explanatory and causal modeling techniques. This
may overlook the nonlinearity and influence of technology-
specific features such as design, quality, or compatibility [12].
With the rise of the availability of discrete data sources,
such as that generated using digital health applications,
there has been greater interest from the research commun-
ity in data-driven approaches for technology adoption. ML
approaches to technology adoption can be broadly split into 2
groups: predictive modeling and explanatory modeling [12].
Predictive modeling seeks to predict actual use behavior
(adopt or not), while descriptive modeling is focused on
the interaction between various constructs that influence the
adoption of a specific technology.

As a data-driven modeling technique, an ML methodology
empirically predicts targeted output, adopted or not. Although
it is possible to combine predictive modeling with explan-
atory modeling, research has shown that higher accuracy
can be achieved using only predictive modeling. The 2
common approaches to developing a predictive model using
ML for technology adoption are supervised and unsuper-
vised. In supervised ML, the most common approach is to
develop predictive models using classification or regression.
Supervised ML models used for technology adoption have
included multiple linear regression, support vector machine,
multilayer perceptron, random forest, decision tree, or
ensemble methods [12,13]. The model’s predictive accuracy
is measured by comparing the performance of 1 or more
ML algorithms. In contrast, unsupervised ML for technology
adoption is developed by applying ML algorithms, typically
based on clustering, to gain insight into the factors that inform
adoption. To complement and enhance the performance of
ML, feature selection techniques can be used to reduce the
dimensionality of the data and improve the reliability of the
model. Feature selection techniques help to exclude irrelevant
factors that have a negligible impact on the model or are
redundant.

The Technology Adoption and Usage Tool project aimed
to model the adoption of mobile-based reminding solutions
by people with dementia and their carers [12]. The project
took an iterative approach to model development, using
a unique and diverse dataset obtained by recruiting 335
participants. The dataset contained genealogical, medical, and
demographic records created by combining data from the
Cache County Study on Memory in Aging and the Utah
Population Database. Participants were categorized into four
groups: 3 types of nonadopter (1=willing but unable, 2=not
willing and not able, 3=not willing but able) and 1 adopter
group. The study assessed the ability to classify whether an

individual would adopt the technology using various ML
algorithms. Results showed that including psychosocial and
medical history information, the developed adoption model,
based on the k-nearest neighbors (k-NN) algorithm, ach-
ieved a prediction accuracy of 99.41% [14]. The study also
investigated the effect of feature selection on each algorithm,
with information gain used to rank features in terms of
discriminating power for classifications.

Ortiz et al [15] proposed a multicriteria decision-mak-
ing approach for technology adoption modeling for people
with dementia. This work applied a fuzzy analytic hierarchy
process (FAHP) to estimate the initial weights of criteria
and subcriteria. The decision-making trial and evaluation
laboratory (DEMATEL) was then used to evaluate the
relationship and feedback among criteria. The technique for
order of preferences by similarity to ideal solution (TOPSIS)
was then used to rank 3 classifiers (k-NN, naive Bayes, and
decision tree) according to their ability to model technology
adoption. Results showed that flexibility and design were
the most relevant criteria, with overall weights of 0.235
and 0.260, respectively. Naive Bayes was the most suitable
classifier, with a closeness coefficient of 67.7%. It was noted
that there was room for further improvement of all models
tested in terms of performance and scalability.

As highlighted by the related work, ML adoption
models have seen significant improvements since being first
developed. These models have been tailored to suit some
use cases and technical solutions. The models have also
been extended to include a range of constructs and demo-
graphics [14,16]. The likelihood of adoption is transient and
spans not only the physical product design and characteris-
tics of the individual but also the social settings and chan-
nels through the technology implemented and disseminated.
Indeed, a user’s perception of technology’s ease of use and
usefulness may change over time as the needs, capabilities,
and perceptions of the individual and society change and
technology capabilities advance.

Indeed, evidence suggests there are substantial benefits
to be made for ML-based approaches to technology adop-
tion [17]. Simple regression-based models have a demonstrat-
able ability to predict individuals who are likely to adopt
technology with an accuracy of over 90% [14]. Parameters
used as input into these models have ranged from sociodemo-
graphic information, such as age and education, to measures
of prior technology experience and perceived usefulness/ease
of use. Increasing input parameters include detailed medical
history [14]. It has also been possible, through the inclusion
of additional processing steps of selecting features, to refine
the adoption model and improve the generalization of the
modeling process [14]. Adoption models have been evalu-
ated and chosen solely based on performance (accuracy).
There would be a benefit in paying closer attention to other
important metrics when selecting a suitable classifier. As
different classifiers and selection criteria can be considered
for addressing this problem, this paper presents a hybrid
MCDM approach to support classifier selection in technol-
ogy adoption processes involving patients with PD. First, the
IF-AHP is implemented to calculate the relative priorities
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of criteria and subcriteria considering experts’ knowledge
and uncertainty. Second, the IF-DEMATEL was applied to
evaluate the cause-effect relationships among criteria/subcri-
teria.

The methodology we propose differs from similar studies
in the literature in terms of its theoretical and practical
contributions. As a methodological contribution, MCDM
methods are integrated. Thanks to MCDM, effective and
reliable decisions can be made [18], and complex prob-
lems can be solved by breaking them into smaller parts
[19]. MCDM is a methodology that guides decision-makers
in structuring and solving decision and planning problems
involving multiple criteria [20]. Decision-makers use MCDM
methods to evaluate possible alternatives and determine how
these alternatives affect the decision-making objective [21].
Furthermore, MCDM methods can help the decision-maker
determine each criterion’s importance and identify trade-
offs between these criteria. Thus, a comparative applica-
tion can be performed with MCDM methods, and the best
alternative solutions can be provided to decision-makers.
Although decision-makers use MCDM methods in health care
management, such as health care performance assessment
[22] measuring the efficiency of hospitals [23], their use in
specialized areas, such as health care technology adoption, is
rare [24]. As a practical contribution, there is no cure for PD.
Although it is impossible to access actual data when selecting
AT that will increase the patient’s quality of life, the benefits
of ATs vary from patient to patient. Therefore, determin-
ing the appropriate classification algorithm also includes
vagueness and ambiguity.

In recent years, decision-makers have integrated multiple
MCDM methods for complex problems [25]. AHP, DEMA-
TEL, and CoCoSo from MCDM methods were used in the
study. AHP does not require complex mathematical calcula-
tions used in criteria weighting and allows the decision-maker
to focus on each criterion [26]. Since the AHP method could
not reflect the uncertainty of the decision-makers, a method
named FAHP was developed by using fuzzy logic and AHP
together [27]. However, FAHP was also criticized in the
literature because it did not express uncertainty. Therefore,
the IF-AHP method is more effective in addressing the
hesitations of decision-makers [28].

Unlike traditional MCDM methods, DEMATEL offers
a more appropriate solution to real-world problems by
considering the interactions between criteria [29,30]. Standard
DEMATEL may often fail to represent the uncertainty
encountered in real-world problems [31]. To overcome this
situation, an attempt is made to deal with the uncertainty by
integrating DEMATEL with fuzzy logic [32]. IF integration
with DEMATEL has been realized. DEMATEL calculation
is almost the same as IF-DEMATEL. The most apparent
differences are the input data and averaging method [33].
In IF-DEMATEL, decision-makers express their preferences
with intutionistic fuzzy sets (IFS). In group information, the
intuitionistic fuzzy weighted averaging (IFWA) operator is
used [34].

CoCoSo is a method based on the integration of the
recently developed weighted sum method and weighted
product method [35,36]. CoCoSo provides a more robust
solution than traditional MCDM methods [37]. It is integra-
ted with AHP and DEMATEL in an IF environment. With
IF-AHP, decision-makers were provided with the ability to
express uncertainties better, and a more realistic evaluation
was made. Similarly, cause and effect criteria were deter-
mined with IF-DEMATEL. Finally, candidate classifiers were
ranked according to their transferability index using CoCoSo.
Another contribution of the study to the literature is in the
validation part. Thanks to the mobile phone app, the proposed
methodology has been verified.

This literature review highlights several critical research
gaps in technology adoption modeling. First, while statistical
and ML approaches, particularly ML, hold great promise
in advancing theoretical frameworks of technology adoption
and improving their predictive power, there is a need for
more nuanced models that account for nonlinear relationships
and technology-specific features like design, quality, and
compatibility. Additionally, the evaluation of classifiers has
traditionally been based solely on performance (accuracy).
However, other metrics should be taken into account for
a more comprehensive assessment. The proposed MCDM
approach offers a promising method for integrating various
criteria and subcriteria to make more effective and reliable
decisions in technology adoption processes.

To address these research gaps, this study introduces a
hybrid MCDM approach to aid in selecting classifiers for
technology adoption processes, specifically those involving
patients with PD. First, considering both expert knowledge
and uncertainty, the IF-AHP was utilized to determine
the relative priorities of criteria and subcriteria. Next, the
IF-DEMATEL was used to assess the cause-effect relation-
ships among these criteria and subcriteria. Last, the CoCoSo
was used to rank the potential classifiers based on their
effectiveness in modeling technology adoption. A mobile
smartphone solution case study was conducted to validate the
proposed methodology.
A Brief Criticism and Gap Analysis in
Technology Adoption Literature
The literature review explores the evolution and limitations
of technology adoption modeling, emphasizing the growing
significance of statistical and ML approaches. Although
foundational theories like the TAM and UTAUT have
shaped understanding by focusing on individual beliefs and
perceptions, they are criticized for their simplicity and narrow
focus on individuals’ beliefs and intentions as well as
oversimplification and neglect of broader contextual factors.
Besides, they often fail to account for the complex inter-
actions between users, technology, and the environment,
as well as nonlinear relationships and technology-specific
features like design, quality, and compatibility. Furthermore,
these traditional theories no longer provide new insights into
technology adoption, necessitating new approaches. Their
reliance on explanatory and causal modeling techniques
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overlooks the potential of unobtrusive data sources and the
inherent nonlinearity in adoption processes.

Recent research highlights the need for more sophistica-
ted models that explain nonlinear relationships and tech-
nology-specific features such as design and compatibility.
ML methods, categorized into predictive and explanatory
modeling, offer promising avenues for enhancing predictive
accuracy, although challenges remain in evaluating models
beyond traditional metrics like accuracy. Current literature
gaps include the overemphasis on performance metrics,
neglecting other important evaluation criteria.

Integrating MCDM methods addresses some of these
challenges by considering criteria such as flexibility and user
preference, thus providing a more comprehensive approach
to classifier selection. Empirical validations, such as the
successful prediction of technology adoption among patients
with dementia using ML algorithms, underscore the poten-
tial and the necessity for ongoing refinement and ethi-
cal considerations in technology adoption research. Recent
studies suggest the usage of MCDM methods in the selection
of ML classifiers to address these limitations. Methods like

the IF-AHP and IF-DEMATEL can evaluate a broader range
of criteria, offering a more comprehensive understanding
of technology adoption. Moreover, an important MCDM
method such as CoCoSo successfully ranks the classifiers
based on their effectiveness in modeling technology adoption.
Thus, a study like the current attempt is needed to vali-
date these methodologies and explore their application in
different technological contexts, such as health care technol-
ogy adoption, where individual needs and preferences play a
crucial role in adoption decisions.

Methods
Overview
A 5-step intuitionistic fuzzy MCDM approach is proposed
to support classifier selection in technology adoption for
people with PD (Figure 1). The validation process consid-
ers a mobile smartphone solution entailing 4 intervention
categories: tipping, memory, walking, and voice. An intricate
explanation of this framework is provided below.

Figure 1. Flow chart of the 5-step intuitionistic fuzzy MCDM approach. CoCoSo: combined compromise solution; IF-AHP: intuitionistic fuzzy
analytic hierarchy process; IF-DEMATEL: intuitionistic fuzzy decision-making trial and evaluation laboratory; MCDM: multicriteria decision-mak-
ing.
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Step 1: Selection of a Decision-Making
Group
This step is about establishing a decision-making team that
compares criteria and subcriteria in both the IF-AHP and
IF-DEMATEL phases. The team is expected to be familiar
with both the criteria set in the structure of the problem
and the alternative algorithms that are likely to be evalu-
ated. Although determining the transferability indexes of
the algorithms is the task of the CoCoSo model, this team
must know the general outline of the problem. It is recom-
mended that the experts enrolled in this team be selected
from experienced, highly educated, and industry-experienced
people.
Step 2: Structuring the MCDM Network
What is meant by the MCDM network, of course, is
the decision structure formed by the selection criteria and
subcriteria. This network also includes the main goal and
alternative classification algorithms in this network. At this
stage, the literature and the opinions of field experts were
used to create decision criteria. Since the most crucial step in
revealing the problem is establishing this MCDM network, it
should be kept in mind that ignoring a criterion or subcrite-
rion that affects the selection process will affect the final
decision and may lead to a wrong selection.
Step 3: Estimating Criteria
and Subcriteria Relative Priorities
Considering Uncertainty and Hesitancy
This section is about determining the relative importance
levels of criteria and subcriteria under the uncertainty of
the decision process and the decision-maker’s hesitation. At
this point, the advantages of membership and nonmember-
ship features that intuitionistic fuzzy sets suggest for high
uncertainty and hesitation in decision-making emerge. At the
same time, its combination with the AHP algorithm provides
both the individual advantages of the 2 concepts and the
integrated advantages. Although AHP is easy to use and
widespread in the literature, it falls short in responding to
the hesitant structure in decision-making, and this gap can be
remedied with IF-AHP. We aim to make pairwise compari-
sons of the expert group established in the IF-AHP phase and
to find the relative importance of the criteria and subcriteria
by using the IF-AHP algorithm.
Step 4: Evaluation of Interdependence
Among Decision Criteria/Subcriteria
Under an Intuitionistic Fuzzy Environment
The reason for using the DEMATEL (under intuitionis-
tic fuzzy environment) method in this triple structure (as
IF-AHP, IF-DEMATEL, and CoCoSo) is to determine the
relationship between the criteria and subcriteria (of which
their weights are obtained via IF-AHP algorithm in the first
phase) and focus on the strength and presence of feedback.
In other words, it is determining which criteria/subcriteria are
the cause and which is the effect criterion regarding classifier
selection decision-making in technology adoption for people
with PD.

Step 5: Calculation of Transferability
Index Per Algorithm
In the final phase of the triple structure, the CoCoSo MCDM
method is used to compute each transferability index of
classification algorithms used in technology adoption for
people with PD. This index value will measure the algo-
rithm’s capability to model the technology adoption. It is
good to note that IF-CoCoSo was not proposed for this case,
considering that indicators’ values of subcriteria are known
and available. IF-CoCoSo is typically adopted when there is
imprecise knowledge or a lack of data [38]. In this line, the
crisp CoCoSo is enough to derive the transferability index
without loss of information.
IF-AHP Algorithm
The IF-AHP algorithm is an MCDM approach that integra-
tes intuitionistic fuzzy set logic into the AHP algorithm. In
addition to denoting the uncertainty and vagueness of human
thought regarding the technology adoption context, the IF
logic is used in this case to represent the knowledge level
of experts, which may vary from one to the other, hinging
upon educational background and experience [33,34,39]. This
latter aspect cannot be typified by type-2 fuzzy nor hesitant
fuzzy sets, which is the reason why they were discarded
from this application. To explain in detail how the IF-AHP
algorithm works, it is helpful to present some notations (basic
math operations, defuzzification, aggregation operators, etc)
about this fuzzy set extension. Atanassov [39] was the first
to propose this fuzzy set extension. After being presented, it
has been applied to many decision problems in many different
industries [40]. There are 2 functions for this type of fuzzy
set: membership and nonmembership. The sum of the degrees
of membership and nonmembership is always equal to 1. The
step-by-step flow of the IF-AHP algorithm is as follows:

An intuitionistic fuzzy set “I” is defined by Equation 1
[41-43]:

(1)I = x,  I μI x , vI x |x ∈ X
where X is a set in a universe of discourse and μI x  refers
to the degree of membership, vI x  refers to the degree of
nonmembership, and πI x  refers to the degree of lack of
knowledge for each x ∈ X:

(2)0 ≤ μI x + vI x ≤ 1
(3)πI x = 1 − μI x − vI x , x ∈ X

One of the critical aspects of intuitionistic fuzzy set notation
is defuzzification. Anzilli and Facchinetti [44] and Ocampo
and Yamagishi [43] proposed and used a different defuzzifi-
cation method as in Equations 4 and 5.

(4)Cφ I = x, μI x + φπI x , vI x + 1 − φ πI x , xϵX witℎ φϵ 0, 1
(5)μφ x = μI x + φπI x
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Cφ I  is a defuzzification operator defined in Equation 4
under a usual fuzzy subset with the membership function
given by Equation 5. Mostly, φ = 0.5 is a solution of the
minimization problem minφϵ 0, 1 d Cφ I ,  I . Here, d refers to
the Euclidian distance. With φ = 0.5, a membership functionμ x = 12 1 + μI x − vI x  characterizes the fuzzy setC0.5 I .

We benefitted from the studies of Karacan et al [45]
and Abdullah and Najib [46] in determining the triangu-
lar intuitionistic fuzzy numbers-based preference scale. The
IF-AHP algorithm we used in this study is processed as
follows:

The first step starts with determining the decision criteria
and subcriteria regarding the selection of classification
algorithms supporting effective AT allocation, fostering
independent living while reducing the economic and social
burden faced by patients with PD and their carers.

The main argument of IF-AHP as “pairwise comparisons”
is made in the second step, following the scale of Karacan
et al [45]. The scale has 5 points: “much more importance”
(0.33, 0.27, 0.40), “more importance” (0.13, 0.27, 0.60),
“equal importance” (0.02, 0.18, 0.80), “less importance”
(0.27, 0.13, 0.60), and “much less importance” (0.27, 0.33,
0.40). The ternaries are in the form of (μI x , vI x , πI x ),
denoting belongingness (affirmation/agreement), nonbelong-
ingness (negation/disagreement), and lack of knowledge
(indeterminacy/abstention) levels [47].

Another important argument of decision-making problems
is performed in this step. The assignment of a coefficient for
experts who assessed the criteria and subcriteria is fulfilled.
The triangular intuitionistic fuzzy scale proposed by Boran
et al [48] is used. It is a 5-point scale with “very important”
(0.90, 0.05, 0.05), “important” (0.75, 0.20, 0.05), “medium
important” (0.50, 0.40, 0.10), “unimportant” (0.25, 0.60,
0.15), and “very unimportant” (0.10, 0.80, 0.10). Assignment
of a weight to a member of the expert team is performed by
Equation 6.

(6)ωk = μk + πk μk/ μk + vk∑k = 1t μk + πk μk/ μk + vk
Here μk, vk, πk  is an intuitionistic fuzzy number used to
assess the kth expert. The ωk means the weight value of kth

expert.
In the fourth step, the experts’ pairwise comparisons on

the criteria and subcriteria are aggregated using the IFWA
aggregation operator as in Equations 7 and 8.

(7)rij = IFWAω = rij1 , rij2 ,… . , rijt = ω1rij1 ω2rij2 … ωtrijt
(8)IFWAω = 1 − k = 1

t 1 − μijk ωk, k = 1
t vijk ωk, k = 1

t 1 − μijk ωk − k = 1
t vijk ωk

Here, R k = rijk mxn is an intuitionistic fuzzy decision
matrix of the kth expert and rij = μij, vij, πij .

In the fifth step, the consistency ratio (CR) for the
aggregated intuitionistic fuzzy decision matrix has been
computed. The traditional CR computation procedure of
Saaty [49-53] is mainly suggested for all types of fuzzy set
extensions.

In the sixth step, the intuitionistic fuzzy weights of the
aggregated intuitionistic fuzzy decision matrix are calculated
using Equations 9 and 10.

(9)w̿i = − 1nln2 μilnμi + vilnvi − 1 − πi ln 1 − πi − πiln2
(10)  wi = 1 − w̿in − ∑i = 1n w̿i

Ranks of the criteria and subcriteria are obtained in the
seventh and last step of the IF-AHP algorithm. It must be
noted that if the values are nonnormalized, they must be
normalized before finding the final optimal values.
IF-DEMATEL Algorithm
After the steps of the IF-AHP algorithm are given above,
the application of the IF-DEMATEL algorithm, which will
investigate the dependency relationship between the criteria
in the second part, has been started. A more straightforward
understanding of the notation here depends on comprehend-
ing the intuitionistic fuzzy set notation presented in the
previous section. The steps of the IF-DEMATEL algorithm
are as follows.

As performed at the beginning of IF-AHP, the first step
involves determining the evaluation criteria and subcriteria
inside the problem.

The second step of IF-DEMATEL is to build a direct
relation matrix. Evaluations of the expert members of the
team are made by consensus. Here, a 2-tuple intuitionistic
linguistic scale is preferred as follows: “null influence” (0.1,
0.9), “low influence” (0.35, 0.6), “medium influence” (0.5,
0.45), “high influence” (0.75, 0.2), and “very high influence”
(0.9, 0.1).

In the third step, the equivalent fuzzy subset’s related
membership degree is computed by Anzilli and Facchinetti’s
procedure [44], as detailed in the IF-AHP algorithm section.
By this procedure, the intuitionistic fuzzy sets are converted
to a corresponding standard fuzzy subset; thus, the “initial
direct relation matrix” in standard fuzzy subsets is built.

In the fourth step, the standard fuzzy subset values are
defuzzified; thus, a crisp initial direct relation matrix is built.

The fifth step is on normalizing the direct-relation matrix,
which is constructed in the previous step (Step 4). The
normalized direct-relation matrix (G) is computed follow-
ing the traditional crisp data-based DEMATEL steps as in
Equations 11-13.
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(11)G = g−1X
(12)g = max max1 ≤ i ≤ n∑j = 1n xij, max1 ≤ j ≤ n∑i = 1n xij
(13)X = xij nxn = ∑K = 1ℎ wkxijk∑K = 1ℎ wk nxn

where,wk demonstrates the weight of expert-k. The X matrix
is the aggregated direct-relation matrix.

The sixth step is to form the total relation matrix (T) by
Equation 14:

(14)T = G I − G −1
where, I is the identity matrix. In this step, the net cause
and effects are identified. Equations 15 and 16 are the
computational formulas of prominence D + RT  and relationD − RT  vectors.

(15)D = ∑j = 1n tij nx1 = ti nx1
(16)R = ∑i = 1n tij 1xn = tj 1xn

The seventh and final step of the IF-DEMATEL algorithm is
finalized by drawing the D + RT - D − RT  digraph map.

The CoCoSo Method
CoCoSo was proposed as a miscellaneous mix of sim-
ple additive weighting (SAW), weighted aggregated sum
product assessment, and multiplicative exponential weighting
methods [35,37,54-56]. Its algorithm includes several steps,
as given below [37].

The first step is to generate an initial decision matrix. It
is referred to in Equation 17. Here i refers to the candidate
classifying algorithms. On the other side, j refers to the
decision criteria and subcriteria regarding the selection of
classification algorithms supporting effective AT allocation,
fostering independent living, and reducing the economic and
social burden faced by patients with PD mentioned in the
IF-AHP and IF-DEMATEL sections.

(17)A = aij
In the second step, the initial decision matrix is normalized
following Equations 18 and 19.

(18)rij = aij − mini aijmaxi aij − mini aij for  benefit  criteria
(19)rij = maxi aij − aijmaxi aij − mini aij for   cost  criteria

The third step of CoCoSo is to calculate the sum of weighted
comparability Si  value and power-weighted comparability
sequences Pi  for each alternative classifying algorithm via
Equations 20 and 21.

(20)Si = ∑j = 1n wjrij
(21)Pi = ∑j = 1n rijwj

In the fourth step, 3 different aggregated appraisal scoresMia, Mib, Mic  are introduced to compute the weights of each
alternative classifying algorithm via Equations 22-24.

(22)Mia = Pi + Si∑i = 1m Pi + Si
(23)Mib = Simini Si + Pimini Pi
(24)Mic = λ Si + 1 − λ Piλmaxi Si + 1 − λ maxi Pi

The fifth and last stage of CoCoSo focuses on finding the
ranking of each alternative classifying algorithm considering
the descending order Mi scores via Equation 25.

(25)Mi = MiaMibMic3 + 13 Mia + Mib + Mic
Ethical Considerations
According to UK regulations (UK Research and Innovation,
2024 [57]), ethical approval was not required for this study as
it did not involve human participants.

Results
Overview
The proposed approach was implemented using the PD
data derived from the iPhone app called mPower [58]. In
detail, 74 adopters and 307 nonadopters were enrolled in
this project. Each participant was required to undertake 4
activity types supported by the app: voice, tipping, walking,
and typing. In all, 3 classification algorithms—naive Bayes,
J48 decision tree, and lazy instance-based k-NN (IBK)—
were candidates to predict AT adoption in this context as
stipulated in [59]. However, this study only focused on the
performance indicators and did not consider other aspects
of the app context, including usability, design, scalability,
and flexibility. Such factors may limit the implementation
of high-accurate algorithms in the clinical scenario, thereby
limiting the exploitation of the app benefits. In the meantime,
not assessing these aspects may trigger cost overruns for the
health care system and have potential detrimental effects on
patients with PD. This has also represented a challenge for
data analytics experts, who must design classifiers highly
adaptable to the environment and the changing dynamics of
the health care sector. The following subsections will describe
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how the multimethod MCDM framework has been applied
to indicate which algorithm should be selected to effectively
discriminate the potential mPower adopters and nonadopters
while considering the practical clinical scenario.
The Decision-Making Group
A pertinent decision-making team from the REMIND project
Consortium [60] was needed to pinpoint the criteria/subcrite-
ria importance and the interrelations in the decision model
that support the technology adoption in patients with PD. In
particular, the team participants are expected to: (1) define the
decision factors integrating the classifier selection model; (2)
undertake the necessary pairwise comparisons to obtain the

relative priorities of the factors in the presence of uncertainty,
vagueness, and hesitancy; (3) perform judgments to assess the
significant cause-effect interrelations affecting the deploy-
ment of classifiers in the wild; and (4) contribute to the design
of recommendations for improving the suitability/transferabil-
ity of the classifiers concerning the real health care scenario.
This intervention was guided by 1 researcher coauthoring this
paper (MO-B) and had the participation of 8 experts from
different disciplines whose profiles are described in Table
1. All these experts have been directly involved in design-
ing assistive technology solutions for patients with PD and
consequently have extensive knowledge of the decision-mak-
ing scenario.

Table 1. Profile of experts enrolled in the classifier selection process.
Expert Profession Areas of expertise Experience (years) Current position
E1 Biomedical engineer Technology adoption modeling – mobile-based reminding

solutions
30 Managing

director
E2 Informatics engineer Artificial intelligence – pervasive and mobile computing >10 Researcher
E3 Biomedical engineer Ambient assisted living – pervasive and mobile computing >10 Senior lecturer
E4 Computer science engineer Pervasive and mobile computing >10 Senior lecturer
E5 Electrical engineer Image processing – artificial intelligence models >10 Professor
E6 Computer science engineer Health innovation – health technology >10 Professor
E7 Informatics engineer Artificial intelligence – pervasive and mobile computing >10 Data scientist

In this application, the project leader designed the classi-
fier selection model by including the decision criteria/sub-
criteria and candidate algorithms elucidated with the aid
of the decision-making group, the health care providers,
the pertinent scientific literature, and the applicable health
guidelines. Moreover, he trained the decision-makers to
make correct judgments using IF-AHP and IF-DEMATEL
techniques. A virtual data-collection tool was prepared and
later used by the participants, who finished all the neces-
sary comparisons during a 1-hour session. This process
raised awareness in the decision-making group of the factors
AT developers should take into account when designing
and deploying the classifiers in the actual health care
context. Usually, the data experts are inclined to enhance
the performance of these algorithms without considering how
they should be implemented in the wild. Therefore, including
all these aspects will empower AT developers to comprehend
the health care scenario and define action lines transforming
classifiers in a feasible technology adoption support in people
with PD.
The Classifier Selection Network
The classifier selection network designed for underpinning
technology adoption in patients with PD was studied together
with the decision-making group to determine if it was
suitable, coherent, reasonable, and deployable in the real
world. The ensuing model (Figure 2) is composed of 5

factors, 16 subfactors, and 3 algorithms. Figure 3 outlines
each element complemented by supplementary descriptions of
the subfactors incorporated into the network.

The decision factors have been subdivided into more
detailed aspects to provide a more complete panorama of the
suitability of classifiers. At the same time, there is a need
to pinpoint improvements that can be translated into more
applicable algorithms. For instance, erformance (F1) has 6
subelements: accuracy (SF1), computational time (SF2), (−)
recall (SF3), (+) recall (SF4), (−) precision (SF5), and (+)
precision (SF6). Accuracy is the number of correct classi-
fications (adopter/nonadopter) divided by the total number
of classifications. On the other hand, computational time
refers to the velocity at which the classifier predicts whether
the patient with PD can adopt the technology effectively.
(−) Recall defines how well the classifier identifies the
patients who cannot assume the assistive solution, which
avoids potential adverse effects on their self-esteem and life
expectancy. Meanwhile, (+) recall measures how well the
algorithm discriminates against patients with PD who can
suitably assume the technology, making it possible to upgrade
their life quality while decreasing delayed intervention. On
a different tack, (−) precision (SF5) measures the relation
between the true negative cases and the predicted negative
cases, while (+) precision (SF6) denotes the same ratio but
considers positive cases.
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Figure 2. The classifier selection network for underpinning technology adoption in people with Parkinson disease.
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Figure 3. Description of classifier selection factors included in the network model.

Conversely, sefulness has been split into explainability (SF7)
and model type (SF8). The first subcategory denotes whether
the doctor/nurse can identify and interpret the technology
adoption decision recommended by the algorithm for a
specific patient with PD. Likewise, model type establishes
whether the algorithm is black-box or white-box.

In the adaptability cluster, 3 decision elements are enlisted:
missing value handling (SF9), classification with discrete and
continuous variables (SF10), and online learning capabil-
ity (SF11). Health care datasets are often characterized by
presenting incomplete information and/or registration errors
regarding critical patient data [61,62]; this is why it is
necessary to determine if the classifier can deal with this
problem without further affecting their functionality. In
addition, it is essential to define if the classifier can cope with
discrete and continuous patient metrics, as evidenced in all
the big data systems supporting Parkinson-related health care
services [63]. Furthermore, it is expected to have classifiers
that can be adapted according to the dynamic context of PD
and the health care scenario. In other words, the algorithm
should evolve by including significant emerging features
responding to the context changes.

Ultimately, the structure criterion comprises 5 aspects:
complexity of data-gathering procedure (SF12), overtrain-
ing (SF13), number of features (SF14), access to valida-
ted datasets (SF15), and statistical classification (SF16).
Complexity of data-gathering procedure establishes if the
algorithm imports the dataset from a low number of self-
administered questions or retrospectively. On a different note,
some classifiers experience overtraining difficulties, which
indicates an apparent performance improvement but entails a
worse generalization of the test data. This problem has been

extensively reported in the ML literature and can only be
noticed once real technology adoption is adequately detected
[64,65]. In the implementation phase, it is preferable to
use classifiers requiring few features to decide whether the
patient with PD can adopt a particular solution; otherwise,
the procedure supporting this decision will be time-consum-
ing and less feasible in the real world. It is additionally
expected that classifiers have access to validated data as
it allows them to avoid corrupted data that could possibly
affect the performance of classifiers. Ultimately, statistical
classification algorithms enable decision-makers to define
which factors are more significant in technology adoption for
people with PD. They provide coefficients whose dimension-
ality and direction denote if each variable substantially/hardly
increases or decreases the adoption likelihood.
Intuitionistic Fuzzy Relative Priorities of
Criteria and Subcriteria: The IF-AHP
Application
The IF-AHP technique was used to compute the relative
weights of criteria and subcriteria in the classifier selec-
tion network. In this regard, a virtual survey was designed
to collate the comparisons based on the assessment scale
suggested in the Intuitionistic Fuzzy Analytic Hierarchy
Process section. Following this, coefficients were assigned
to the decision-makers using the scheme proposed by Boran
et al [48]. In this case, the decision-maker (experts; Ek) with
the greatest relevance was E1 (0.2857), taking into account
their comprehensive knowledge and background in the design
and application of IT solutions for health care (Table 2).
Afterward, the pairwise comparisons derived from the Es
were aggregated by the IFWA operator (Equations 7 and
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8). An example of this stage is presented in Table 3 for the
flexibility subcriteria. This matrix was then normalized by
Equations 9 and 10, as evidenced in Table 4. Table 5 depicts
the resulting local weight and overall weights of factors

and subfactors. The CR of each cluster was computed using
Saaty’s approach [49,50]: factors (0.04), performance (0.002),
usefulness (0), adaptability (0.06), and structure (0.01).

Table 2. Priorities of decision-makers.
Expert Intuitionistic fuzzy number Priority
E1 (0.9, 0.05, 0.05) 0.2857
E2 (0.75, 0.2, 0.05) 0.2380
E3 (0.75, 0.2, 0.05) 0.2380
E4 (0.75, 0.2, 0.05) 0.2380
E5 (0.75, 0.2, 0.05) 0.2380

Table 3. Aggregated intuitionistic fuzzy matrix for flexibility subcriteria.
SF9 SF10 SF11

SF9 [0.020, 0.180, 0.800] [0.099, 0.176, 0.724] [0.099, 0.176, 0.724]
SF10 [0.099, 0.176, 0.659] [0.020, 0.180, 0.800] [0.074, 0.159, 0.766]
SF11 [0.099, 0.176, 0.724] [0.074, 0.159, 0.766] [0.020, 0.180, 0.800]

Table 4. The normalized priorities of flexibility subcriteria.
Intuitionistic fuzzy weight Nonfuzzy weight Overall weight

SF9 0.073 0.177 0.749 0.292 0.069
SF10 0.065 0.172 0.742 0.267 0.063
SF11 0.065 0.172 0.763 0.273 0.065
Total —a — — 0.833 0.198

aNot applicable.

Table 5. The local weight and overall weight of factors and subfactors in the classifier selection model.
Criteria/subcriteria Local weight Overall weight
Performance (F1) —a 0.187
  Accuracy (SF1) 0.180 0.034
  Computational time (SF2) 0.193 0.036
  (–) Recall (SF3) 0.157 0.029
  (+) Recall (SF4) 0.160 0.030
  (–) Precision (SF5) 0.156 0.029
  (+) Precision (SF6) 0.154 0.029
Usefulness (F2) — 0.199
  Explainability (SF7) 0.500 0.100
  Model type (SF8) 0.500 0.100
Scalability (F3) — 0.198
Adaptability (F4) — 0.202
  Missing value handling (SF9) 0.351 0.069
  Classification with discrete and continuous variables (SF10) 0.321 0.063
  Online learning capability (SF11) 0.328 0.065
Structure (F5) — 0.214
  Complexity of data-gathering procedure (SF12) 0.177 0.038
  Overtraining (SF13) 0.207 0.044
  Number of features (SF14) 0.212 0.045
  Access to validated datasets (SF15) 0.223 0.048
  Statistical classification (SF16) 0.181 0.039
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Criteria/subcriteria Local weight Overall weight

aNot applicable.

Intuitionistic Fuzzy Interdependence and
Feedback: The IF-DEMATEL Approach
The next step of this approach was to study the interre-
lations among the classifier selection factors/subfactors to
identify interventions in the long-term classifier development
and technology adoption processes. The 2-tuple intuition-
istic linguistic scale for assessing the influence between
the factors/subfactors (Intuitionistic Fuzzy Decision-Making
Trial and Evaluation Laboratory section) was first explained
to the experts. The decision-makers then made the judg-
ments using an easy-to-manage data-collection tool during
a 3-hour session. Table 6 presents the initial intuitionis-
tic fuzzy direct-relation matrix derived from E3 concern-
ing the adaptability subfactors. As a next step, the IFS
were crisped by a 2-step procedure. First, the IFS were
transformed into their respective subsets using the equation

μ x = 12 1 + μI x − vI x  (Table 7). A crisp function
was later applied to convert the intuitionistic fuzzy subset into
a crisp value. In this respect, a crisp initial direct relation
matrix is generated when allocating the values in Table 7
to the triangular fuzzy vector <0, 4, 4> (Table 8). We then
aggregated the defuzzified values of all experts using the
simple mean (Table 9). The next stage was to compute the
normalized direct-relation matrix (G) by applying Equations
11-13 (Table 10). The total relation matrix T (Table 11)
was then derived by using Equation 14. Ultimately, Table
12 presents the prominence (D+R) and relation (D–R) values
resulting from Equations 15 and 16 to define which factors
or subfactors can be grouped into the driving and effect
categories. The developers should be focused on the main
drivers to make the classifiers more adaptable to the health
care scenario and the technology adoption requirements.

Table 6. Initial intuitionistic fuzzy direct-relation matrix – E3 (adaptability subfactors).
SF9 SF10 SF11

SF9 0 0 0.75 0.2 0.1 0.9
SF10 0.75 0.2 0 0 0.1 0.9
SF11 0.5 0.45 0.5 0.45 0 0

Table 7. Initial intuitionistic fuzzy direct-relation matrix – E3 in subsets (adaptability subfactors).
SF9 SF10 SF11

SF9 0 0.78 0.1
SF10 0.78 0 0.1
SF11 0.53 0.53 0

Table 8. Crisp direct-relation matrix for adaptability subcriteria – E3.
SF9 SF10 SF11

SF9 0 3.1 0.4
SF10 3.1 0 0.4
SF11 2.1 2.1 0

Table 9. Aggregated direct-influence matrix for adaptability subcriteria.
SF9 SF10 SF11

SF9 0 2.175 1.912
SF10 2.65 0 2.225
SF11 2.662 2.662 0

Table 10. Normalized aggregated direct-influence matrix for adaptability subcriteria.
SF9 SF10 SF11

SF9 0 0.408 0.359
SF10 0.498 0 0.418
SF11 0.5 0.5 0
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Table 11. Total influence matrix for adaptability subcriteria.
SF9 SF10 SF11 D

SF9 2.387 2.518 2.269 7.174
SF10 3.026 2.513 2.555 8.093
SF11 3.206 3.016 2.412 8.634
R 8.619 8.047 7.235 —a

aNot applicable.

Table 12. Dispatchers and receivers in the classifier selection network.
D+R D–R Category

F1 9.924 –0.793 Effect
SF1 9.403 0.969 Driver
SF2 7.948 –1.054 Effect
SF3 8.397 –0.604 Effect
SF4 8.947 0.168 Driver
SF5 8.838 0.395 Driver
SF6 8.768 0.127 Driver
F2 9.879 –1.026 Effect
SF7 33.545 –1.000 Effect
SF8 33.545 1.000 Driver
F3 9.882 –0.118 Effect
F4 10.481 1.234 Driver
SF9 15.794 –1.445 Effect
SF10 16.140 0.047 Driver
SF11 15.868 1.399 Driver
F5 10.423 0.703 Driver
SF12 18.864 0.620 Driver
SF13 16.530 –2.369 Effect
SF14 18.861 1.024 Driver
SF15 18.733 1.115 Driver
SF16 18.385 –0.390 Effect

D + RT − D − RT  digraph maps (Figure 4A–4E) were
also built to examine the interrelations among the factors/sub-
factors underpinned by the computation of reference values
elucidating the significant influences. The developers must

carefully intervene in these influences in conjunction with
the health care staff to ensure high-deployable classification
algorithms.
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Figure 4. Impact-digraph maps for (A) factors, (B) performance, (C) usefulness, (D) adaptability, and (E) structure.

Ranking of Classifiers: The CoCoSo
Implementation
This section outlines the CoCoSo application, whose main
objective is two-fold: (1) to derive the transferability index
(Mi score) helping to rank the classifier alternatives, namely,
lazy IBK – k-NN (A1), naive Bayes (A2), and J48 decision
tree (A3), that may support technology adoption in people
with PD; and (2) to detect those characteristics that should
be improved in each algorithm to better support this decision
in the wild. The CoCoSo implementation was initiated by

setting a metric per each classifier selection criterion/subcrite-
rion. The list of indicators and their formula are presented
in Table 13. These indexes were established considering
the pertinent scientific evidence and the health care context
associated with PD. The values of each decision element
and classifier were included in the initial decision matrix
A (Tables 14 and 15). This arrangement (Equation 17) also
incorporates the overall weights w computed by using the
IF-AHP technique (for more information, see the section
titled The CoCoSo Method).

Table 13. List of metrics and their calculation method.
Classifier selection criterion/subcriterion Metric Formula
Accuracy (SF1) Average accuracy

i = 1
n TNC + TPCTPC + FPC + FNC + TNC ∗ 100n

TNC: true negative cases
TPC: true positive cases
FPC: false positive cases
FNC: false negative cases
n: number of iterations
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Classifier selection criterion/subcriterion Metric Formula
Computational time (SF2) Average time complexity

i = 1
n ITin

n: number of iterations
ITi: iteration time per instance i

(–) Recall (SF3) Average negative recall

i = 1
n TNCFPC + TNC ∗ 1n

TNC: true negative cases
FPC: false positive cases
n: number of iterations

(+) Recall (SF4) Average positive recall

i = 1
n TPCTPC + FNC ∗ 1n

TNC: true positive cases
FNC: false negative cases
n: number of iterations

(–) Precision (SF5) Negative positive precision

i = 1
n TNCTNC + FNC ∗ 1n

TNC: true negative cases
FPC: false negative cases
n: number of iterations

(+) Precision (SF6) Average positive precision

i = 1
n TPCTPC + FPC ∗ 1n

TNC: true positive cases
FPC: false positive cases
n: number of iterations

Explainability (SF7) Interpretability If the algorithm is simple to interpret by a doctor and/or nurse (2),
otherwise (1)

Model type (SF8) Model category If the model is a black box (2), white box (1)
Scalability (F3) Cost classification If the learning cost overpasses €927 (US $1018) (1), otherwise (2)
Missing value handling (SF9) Missing value management If the algorithm supports datasets with missing values (2), otherwise

(1)
Classification with discrete and continuous
variables (SF10)

Data type If the classification model supports continuous and discrete data (2),
otherwise (1)

Online learning capability (SF11) Online learning If the classifier is trained through online learning (2), otherwise (1)
Complexity of data-gathering procedure
(SF12)

Data-gathering management If a self-administered survey is used for collecting the feature set (2),
otherwise (1)

Overtraining (SF13) Overtraining If the algorithm has overtraining problems (2), otherwise (1)
Number of features (SF14) Number of features Number of the input variables requested by the algorithm to perform

the technology adoption prediction
Access to validated datasets (SF15) Classifier validation If the algorithm can be verified with validated datasets (2), otherwise

(1)
Statistical classification (SF16) Statistical capability If the model is statistical (2), otherwise (1)

Table 14. Initial decision matrix A – SF01 to F4.
Algorithm SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 F3
A1 73.36 0.00011 0.72 0.74 0.73 0.73 2 2 1
A2 69.05 0.0000 0.74 0.63 0.71 0.67 2 2 1
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Algorithm SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 F3
A3 76.98 0.0017 0.83 0.71 0.81 0.74 2 1 2
Overall
weight

0.034 0.036 0.029 0.030 0.029 0.029 0.100 0.100 0.198

Table 15. Initial decision matrix A – SF9 to SF16.
SF09 SF10 SF11 SF12 SF13 SF14 SF15 SF16

A1 2 2 1 2 1 5 2 1
A2 2 2 2 2 1 5 2 2
A3 2 2 1 2 1 5 2 2
Overall
weight

0.069 0.063 0.065 0.038 0.044 0.045 0.048 0.039

The initial matrix A was then normalized following Equations
18 and 19. After this, we computed the Si  and Pi  for
each classifier (Table 16). The next step involved estimating
the aggregated appraisal scores Mia, Mib, Mic  via Equations

20-22 with λ=0.5 (Table 16). Finally, the transferability indexMi score (Equation 23) was derived for each classifier (Table
16).

Table 16. Aggregated appraisal scores and ranking of classifiers.
Si Pi Mia Mib Mic Mi Ranking

A1 0.5213 11.929 0.3126 2.0892 0.7841 1.8620 2
A2 0.5523 10.952 0.2888 3 0.7246 1.7796 3
A3 0.8868 14.990 0.3986 3.0700 1.0000 2.5592 1

Validation Study: Contrasting CoCoSo
Results With TOPSIS and SAW
Even though we have suggested a robust strategic methodol-
ogy combining 3 MCDM techniques with the intuitionistic
fuzzy logic, it is always necessary to validate its accuracy
compared to well-known methods. In this sense, we contras-
ted the scoring technique used in the last phase (CoCoSo)
with SAW and TOPSIS. The resulting rankings in each
method are shown in Figure 5. Upon analyzing this graph,
no changes were observed in A3, which was the most suitable
classifier in all 3 approaches. There is a slight variation in the

SAW ranking of A1 and A2 compared to the findings derived
from TOPSIS and CoCoSo. This is expected, considering
the differences in each method’s normalization and scoring
procedures. These results then underpin the accuracy and
applicability of the suggested methodology.

Furthermore, the Pearson correlation tests (Figure 6) were
conducted considering the transferability indexes derived
from each method. The scores are highly correlated (r>0.8),
especially when comparing CoCoSo and TOPSIS (r=1). This
procedure strengthens the graphical validation performed in
Figure 5.
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Figure 5. Ranking of classifiers according to CoCoSo, SAW, and TOPSIS. CoCoSo: combined compromise solution; SAW: simple additive
weighting; TOPSIS: technique for order of preference by similarity to ideal solution.

Figure 6. Pearson correlation tests between transferability indexes of TOPSIS, SAW, and CoCoSo. CoCoSo: combined compromise solution; SAW:
simple additive weighting; TOPSIS: technique for order of preference by similarity to ideal solution.

Discussion
Principal Results, Limitations, and
Comparison With Previous Work

The Importance of Classifier Selection Criteria
and Subcriteria
Considering the IF-AHP results, structure (F5) was identified
as the factor with the highest relative priority. However, there

was no significant difference between this factor and the other
factors involved in the selection model (F5 vs F4=0.012;
F5 vs F2=0.015; F5 vs F3=0.016; F5 vs F1=0.027). This
demonstrates that all these factors should be simultaneously
considered when selecting classifiers supporting technology
adoption in patients with PD. Specifically, structure is
identified as an essential factor in the selection process, given
the need to accelerate the deployment of the classifiers in
the actual technology scenario. Algorithms with overtraining
problems, complex data-collection procedures, a high number
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of input features, no access to validated datasets, and no
statistical modeling may enlarge the learning curve in health
care staff and trigger a high rate of incorrect classifications.
This finding is confirmed by Badillo et al [66], who identi-
fied that an inadequate or deficient model structure could
affect the key variable predictions, which, in the case of the
technology adoption processes, may signify fair discrimina-
tion between adopters and nonadopters of assistive technolo-
gies [67]. Therefore, efforts should be directed at improving
the structural characteristics of the classifiers to optimize the
technology adoption process within the health care scenario.
Thereby, the rate of rejection and abandonment of technology
can be reduced while improving the quality of life of patients
with PD and their families.

It is also essential to analyze the ranking of classifier
selection subfactors to derive more focused interventions. In
this case, the first 2 (explainability and model type) corre-
spond to the usefulness domain. The importance of these
subcriteria lies in the fact that the selected classifiers should
be easy to manage and interpret for nonexpert users such
as doctors and support staff. On the contrary, there will be
some resistance to change, lack of interest, extended learning
time, and subsequent delays in technology adoption. These
findings confirm what Miotto et al [68] reported regarding the
importance of the model’s explainability and the interpretabil-
ity of the results as critical aspects in developing reliable
technology assistance in patients with PD.

The following 3 subfactors in the ranking are missing
value handling, online learning capability, and classification
with discrete and continuous variables, which belong to the
adaptability factor, the second most crucial factor in the
selection model. Missing value handling is one of the most
common and intrinsic problems in handling large volumes of
health care data [69,70]. There are several reasons for missing
data, including poor adherence to data handling procedures
and policies and unsuitable reporting mechanisms. Conse-
quently, the technology adoption classifiers must be able to
identify and impute the lost data adequately to avoid biases
or false results that can lead medical and support staff to
make wrong decisions when allocating a specific solution.
This poses a challenge for developing studies focused on
improving the handling of missing data. Removing values,
assigning default values, or blaming the data have been some
of the reported missing data approaches [71-73]. For instance,
Prince et al [74] demonstrated the ability to predict PD in
the presence of missing values by dividing the dataset into
2 subgroups comprising people with missing and complete
source data. On the other hand, the online learning capability
implies that technology adoption algorithms must continu-
ously evolve by incorporating new features according to
advances in the diagnosis and management of PD, both at
the clinical and home care levels, which validate the findings
of Ortiz-Barrios et al [5]. One of the strategies that can
be adopted to improve the learning capacity of the classi-
fier is the one proposed by Sigcha et al [75], in which a
pretrained transfer learning model was designed to enhance
the technology adoption in natural environments. Finally, the
importance of the classification with discrete and continuous

variables lies in the ability of classifiers to receive data of a
different nature in the context of PD. For example, Harimoor-
thy and Thangavelu [76] mentioned that one of the main
criteria in PD-related prediction models is the collection of
patients’ voice characteristics, whose nature may be discrete
or continuous.

Ultimately, consistency rates were computed for the
aggregated intuitionistic fuzzy decision matrixes based on
Saaty [49,54]. The results showed that all matrices were
consistent (CR<0.1), demonstrating the decision-making
process’s robustness regarding the estimated priorities of
factors and subfactors. These outcomes are supported by an
adequate selection of experts complemented with training
and guidance during the evaluation process. In addition, it
is important to remark on the importance of using easy-to-
manage surveys and the shorter version of Saaty’s scale to
reduce assessment bias [77-80]. The sound effects of these
practices are also evident in large matrices (n≥5; performance
and structure subcriteria) where the CR was equal to or less
than 0.01.

Interdependence Assessment in the Classifier
Selection Network
IF-DEMATEL shows that adaptability (F4) and structure (F5)
are the dispatchers while performance (F1), usefulness (F2),
and scalability (F3) belong to the effect group. There-
fore, developers, personnel, and physicians must establish
intervention actions focused on the driver factors to support
the technology adoption process in patients with PD in the
long term. In addition, structure and adaptability present
the highest prominence value, being the primary influencers
in the classifier selection model and then become priority
factors that need to be carefully considered in ML algo-
rithm design approaches for the PD context. These results
are consistent with the findings of Sigcha et al [75], who
highlighted that the architecture, the training configurations,
and the learning model parameters are essential for the
adequate scalability of the discrimination results. In this
sense, a flexible model architecture and the documentation of
all the model construction stages are strongly recommended
for making the technology adoption process more efficient.
Therefore, classifiers with these characteristics must have a
high probability of being selected to support this process in
the health care scenario. These conclusions are also underpin-
ned by the presence of a feedback relationship between the
aforementioned elements (Figure 4A), where it is evident how
the data collection, training, and processing highly restrict the
adaptability of the classifier to the PD context.

In addition, influence maps (Figure 4B–E) were pre-
pared to show the inner interactions in each cluster and
establish action courses for improving the suitability of
PD technology adoption classifiers. Regarding the perform-
ance criterion (Figure 4B), the threshold value was defined
as θ = 19.2062 = 0 . 53, which helped to elucidate the signifi-
cant dependencies. In conclusion, accuracy (SF1), (+) recall
(SF4), (+) precision (SF5), and (–) precision (SF6) are the
effect generators or dispatchers, while computational time
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(SF2) and (−) recall (SF3) are the receivers. It is also
essential to emphasize the feedback relationships (orange
arrows): SF1-SF5, SF1-SF6, SF1-SF4, SF5-SF6, SF6-SF4,
and SF4-SF5. These results confirm the findings provided
by Pereira et al [81] related to the existing correlation
between different performance metrics when selecting the
most appropriate classifier. It is also essential to highlight
the cause-effect relationship between accuracy (SF1) and
computational time (SF2). This relationship is significant
when evaluating the classifier’s performance due to the
dilemma of obtaining shorter execution times at the expense
of predictive capacity. In this regard, Ali et al [82] mentioned
that in many assistive technology medical applications such
as PD, the execution time and complexity of the algorithm are
crucial parameters for effective deployment support, lower
resistance to change, and adoption in the real health care
scenario. Otherwise, the clinicians may perceive the models
as work overload under constant pressure. Therefore, research
should be oriented to developing technology adoption models
with high predictive capacity but low processing times.

On a different note, a reference value θ = 33.54522 = 8.386
was defined for the usefulness subfactors group (Figure 4C).
The interrelationship map uncovers that explainability (SF7)
is the receiver and the model type (SF8) is the dispatcher.
A related work by Zhang et al [17] indicated that trans-
parency and accessibility to visualization allow the develop-
ment of assistive health care technologies that can be easily
analyzed and rationally interpreted by the clinicians who will
use these solutions in the daily PD management routine.
These characteristics are satisfied by white-box classifiers
(eg, decision tree – A3), which reduces the learning curve
experienced by health care professionals.

Interdependencies were also detected between the
adaptability subfactors (Figure 4D). In this regard, the
threshold metric was estimated to be θ = 23.90132 = 2.656. The
map revealed that missing value handling (SF9) is the only
receiver, while the classification with discrete and continu-
ous variables (SF10) and online learning capability (SF11)
are the dispatchers. Although there is some debate regard-
ing the absolute need for discrete information [83], the PD
dynamics demands models capable of working with new
input variables, either continuous [84] or discrete [85], to
represent better the technology adoption context related to
these patients. The algorithms can be updated and effec-
tively respond at a human-level AI, as argued by Cartuyvels
et al [86]. Specifically, the continuous-discrete representa-
tions allow the model to capture PD contextual information
better. Handling both types of variables helps to address the
limitations that each one holds. Likewise, it is vital to count
on ML models that can learn from real-time data so that they
can evolve to respond to the changing scenario. Thereby,
these models can discriminate between adopters/nonadop-
ters effectively considering the dynamic of the technology
acceptance features. In this respect, Hoi et al [87] postulated
that learning from large-scale, nonstationary accurate data is
still an open challenge for the developers who are called
to make this process more efficient and scalable. This is

partially explained by the fact that real datasets are frequently
incomplete, thereby fostering the use of imputation methods
addressing the missing values [88,89].

The interactions within the structure cluster (Figure 4E)
are not less relevant. The digraph portrays that the complex-
ity of data-gathering procedure (SF12), number of features
(SF14), and access to validated datasets (SF15) are the main

drivers (i = 1
n TNC + TPCTPC + FPC + FNC + TNC ∗ 100n ),

whereas overtraining (SF13) and statistical classification
(SF16) are the receivers. The presence of feedback interre-
lations is also glaring among SF12, SF14, and SF15, the
reason why the classifier developers need to handle this triplet
effectively. The inclusion of AI algorithms in the context
of PD technology is facilitated when the classifiers require
fewer inputs to make the predictions. Doctors and nurses
are usually reluctant to use a decision-making aid if it is
too complex to manage and does not offer a significant
benefit compared to the current procedures and standards
[90]. In addition, simpler data-gathering mechanisms are
desired to stifle a potential lack of interest from medical
staff, prediction inconsistencies, extended consultation times,
and work overload [91]. These aspects need to be comple-
mented by suitable access to validated datasets, which is
essential to refine the accuracy/correctness of these mod-
els when pinpointing the patients with PD with the high-
est technology adoption probability. However, patients and
health care institutions often need to be more confident in
providing personal data for security and privacy reasons. This
is a significant barrier to the implementation of personalized
care; therefore, it requires the application of new stringent
regulations better governing data collection, use, and storage
[92].

Transferability Index and Improvement Areas
CoCoSo was utilized to calculate the transferability index of
each classifier, derive the ranking in descending order, and
detect areas of improvement. This is a major contribution of
this paper, considering that most related studies only focus
on the performance measurements to select the best classifier
in technology adoption for patients with PD [12,13,84]. In
this case, the outcomes uncovered that the most appropriate
algorithm for supporting technology adoption in patients with
PD is the A3 - J48 decision tree. Still, there are areas for
improvement in each algorithm that diminish their suitability
in the health care scenario:

• Moderate accuracy, (−) precision, (+) precision, (−)
recall, and (+) recall levels: In this set of classifi-
ers, intermediate accuracy levels were reported, which
entails the need to include other predictors either single
or hybrid to augment the capability of distinguishing
between patients with PD who will accept the assistive
solution and those who will not. In addition, the (−)
recall values were found to be at a medium degree,
which evidences the need for upgrading their ability
to identify the patients with PD who are not suitable
adopters of the solution and consequently circumvent
latent adverse effects on their self-esteem and life
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expectation due to incorrect technology allocation. In a
similar vein, (+) recall scores were categorized into the
medium category, revealing the necessity of increasing
their capability to quickly pinpoint patients with PD
who can effectively assume the solution as part of their
treatment. In addition, (−) precision and (+) preci-
sion values demonstrate moderate performance when
predicting nonadoption and adoption of the showcased
technology. It is hence suggested to (1) collect more
data to train the algorithms better; (2) refine the model
hyperparameters, including the regularization strength;
(3) apply class weights in case of imbalance [93]; (4)
use ensembling domain knowledge techniques [94]; and
(5) implement data augmentation by transforming the
existing datasets if data-gathering restrictions cannot be
overcome [95].

• Low scalability: In this case, the training process of
A1 and A2 overpasses €927 (US $1018); therefore,
strategies to make them more attractive to health care
administrators from a financial perspective are needed.
Application-specific integrated chips may be a feasible
alternative, considering their processing speed. In
parallel, data decomposition methods could be used to
reduce the processing complexity, accelerate training,
and consequently diminish the cost of learning.

• Low flexibility: A1 and A3 are not trained through
online learning, which hinders their potential to rapidly
evolve according to the changing scenario of PD and
the health care sector. If this is not solved, these
algorithms will require retraining to be updated, which
is costly and affects their scalability in hospitals [87]. In
response, online learning algorithms should be applied
to extract PD data arriving sequentially. It is possible
to count on an updated classifier representing the PD
context in real time. Some generic proposals have
emerged to provide an alternative pathway to deal with
this problem in the real world. For example, Lin et
al [96] proposed a scalable quantile-based induction
model to boost the Hoeffding tree, thereby making
the algorithm more flexible and reducing storage
and computational requirements. On a different note,
Ferreira et al [97] proposed an extension of k-NN to
make it more profitable in computational cost without
compromising performance.

Conclusions
This study uses a combination of the IF-AHP, IF-DEMA-
TEL, and CoCoSo techniques to find the best classifica-
tion algorithm for detecting prospective AT adoption among
people with Parkinson disease. By adopting a knowledge-
driven approach to AT adoption, the suggested methodology
addresses the constraints of other accuracy-based methods by

considering nontypical characteristics such as these solutions’
design, validation, and implementation phases.

The study emphasizes the critical importance of carefully
considering classifier selection criteria and subcriteria when
implementing technology for PD patients. The structure factor
(F5) and scalability (F4) were identified as top priorities,
indicating its essential role in accelerating classifier deploy-
ment in real-world scenarios. It was noted that inadequate
model structure could lead to incorrect predictions. At the
same time, low-scalable algorithms may represent a barrier to
technology adoption in patients with PD.

Additionally, the explainability and model type subcriteria
within the usefulness domain were highlighted as crucial.
These factors ensure that selected classifiers are user-friendly
and interpretable for nonexpert users, such as medical
professionals and support staff. This helps mitigate resistance
to change and delays in technology adoption. White-box
algorithms were specifically emphasized for their transpar-
ency, enabling a deeper understanding of predictions and
facilitating more effective interventions.

Although the study contributes to the literature in many
aspects, the study has several limitations that must be
highlighted. First, the findings are based on a specific dataset
and context related to PD, potentially limiting their gener-
alizability to different populations or health care settings.
Additionally, the accuracy of the results heavily relies on the
assumed expertise of the individuals involved in the decision-
making process. The study acknowledges the challenge of
missing data in health care datasets, emphasizing the need to
carefully consider data quality and availability. Furthermore,
the number of evaluated classification algorithms is limited
to 3. Different ATs may be needed in various stages of PD.
Similarly, the effects of chronic diseases other than PD on
the choice of AT and the impact of these conditions on the
selection of the classification algorithm were not discussed in
the study. Specific weaknesses in the selected classifiers, such
as moderate accuracy levels and issues related to scalability
and flexibility, may impact their suitability for real-world
health care applications. Ultimately, some difficulties in
applying this approach may emerge in ever-changing contexts
if data scientists are not suitably trained in MCDM techni-
ques.

In the study, criterion weights were determined by the
IF-AHP method. The AHP method requires more evalua-
tions than other weighting methods [98], such as the best-
and-worst method, and it is difficult to detect inconsistent
evaluations while evaluating. In addition, it was not tested
whether a follow-up group representing all patients with PD
was included for the study validation. It is recommended that
researchers address these aspects in future studies.
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