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Abstract

Background: Speech intelligibility and speech comprehension for dysarthric speech has attracted much attention recently.
Dysarthria is characterized by irregularities in the speed, strength, pitch, breath control, range, steadiness, and accuracy of muscle
movements required for articulatory aspects of speech production.

Objective: This study examined the contributions made by other studies involved in dysarthric speech comprehension. We
focused on the modes of meaning extraction used in generalizing speaker-listener underpinnings in light of semantic ontology
extraction as a desired technique, applied method types, speech representations used, and databases sourced from.

Methods: This study involved a systematic literature review using 7 electronic databases: Cochrane Database of Systematic
Reviews, Web of Science Core Collection, Scopus, PubMed, ACM, IEEE Xplore, and Google Scholar. The main eligibility
criterion was the extraction of meaning from dysarthric speech using natural language processing or understanding approaches
to improve on dysarthric speech comprehension. In total, out of 834 search results, 30 studies that matched the eligibility
requirements were acquired following screening by 2 independent reviewers, with a lack of consensus being resolved through
joint discussion or consultation with a third party. In order to evaluate the studies’ methodological quality, the risk of bias
assessment was based on the Cochrane risk-of-bias tool version 2 (RoB2) with 23 of the studies (77%) registering low risk of
bias and 7 studies (33%) raising some concern over the risk of bias. The overall quality assessment of the study was done using
TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis).

Results: Following a review of 30 primary studies, this study revealed that the reviewed studies focused on natural language
understanding or clinical approaches, with an increase in proposed solutions from 2020 onwards. Most studies relied on
speaker-dependent speech features, while others used speech patterns, semantic knowledge, or hybrid approaches. The prevalent
use of vector representation aligned with natural language understanding models, while Mel-frequency cepstral coefficient
representation and no representation approaches were applied in neural networks. Hybrid representation studies aimed to reconstruct
dysarthric speech or improve comprehension. Comprehensive databases, like TORGO and UA-Speech, were commonly used in
combination with other curated databases, while primary data was preferred for specific or unique research objectives.

Conclusions: We found significant gaps in dysarthric speech comprehension characterized by the lack of inclusion of important
listener or speech-independent features in the speech representations, mode of extraction, and data sources used. Further research
is therefore proposed regarding the formulation of models that accommodate listener and speech-independent features through
semantic ontologies that will be useful in the inclusion of key features of listener and speech-independent features for meaning
extraction of dysarthric speech.

(JMIR Rehabil Assist Technol 2023;10:e44489) doi: 10.2196/44489
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Introduction

The comprehension of dysarthric speech in usual discourse goes
beyond basic recognition of the words uttered by the speaker.
Effective comprehension acknowledges the legacy
communication structure of speaker-channel-listener, with a
focus on the intended message. As such, it is important to figure
out the intended message of the dysarthric speaker, particularly
after the recognition of the words uttered. The nature of
dysarthric speech makes the comprehension task graver
following the adaptive means taken up by such speakers, which
may only be understood better by listeners who are familiar
with their manner of expression and choice of vocabulary [1,2].
Having knowledge of the topic of discussion during discourse
may be helpful in understanding what the patient with dysarthria
is saying; however, it has been shown that even the patterns of
intertopic switching by these speakers are outside of the usual
discourse norms. As such, the primary task of listener-targeted
remediation in offsetting the intelligibility burden associated
with dysarthria from the speaker is left with the listener [3,4].

Speech contextualization is the most direct approach taken
toward comprehending speech. Linguistically, context refers to
a part of the real world where certain events or conversations
occur, and it is frequently mistaken with another meaning,
namely, knowledge about the same thing [5]. To discern context,
there must be some common information between the speaker
and the listener, at least to an acceptable degree. The concepts
of comprehensibility and intelligibility may be distinguished
by the fact that comprehensibility incorporates
signal-independent information, such as syntax, semantics, and
physical context. This distinction implies that the ability of a
listener to retrieve the semantic code of spoken speech is
dependent on both the acoustic-phonetic information and all
relevant signal-independent information [6]. This dependence
influences the main assumption of this study that events
occurring within and without the speech itself are crucial for
deciphering the intended meaning of the words spoken, thereby
informing the context of the situation.

With the recent growing interest in the explicit modelling of
events in structural conceptual models, ontology extraction has
become one of the formidable trends and tools of use for
explicitly representing events in structural models [7].
Ontologies are mainly perceived as a knowledge graph able to
formally model different aspects of our real world [8]. A
common issue with these ontologies is that, being manually
crafted and maintained by domain experts, they tend to evolve
relatively slow and become quickly outdated. To keep up with
the pace of the constant evolution of the research landscape,
some institutions are crowd-sourcing their classification scheme
[9]. More efficient techniques, such as the use of self-learning
vector machines, have been proposed to counter these
shortcomings [10].

Speech comprehension as implemented in neural machine
translation and automated speech recognition models are mostly

ineffective as attributed by their universal assumptions that tend
to factor out the listener or intended listener while trying to
locate context from isolated sentences or in some cases
interrelated sentences from the same speaker [11,12]. The close
standing techniques, such as semantic projection, assume
similarity in vocabulary level between the speaker and listener
with little emphasis put on levels of familiarity or topic sentence
as the bridge between the message source and the intended
recipient [1,2].

The fundamental structure for these solutions, which is word
vector mapping, bears few pointers that could aid word
embedding in informing meaning when plugged into any sort
of machine translator, whether affective or attention-based
[5,13]. These challenges are more elaborate in dysarthric speech
where speech listeners are more likely to create linguistic
generative models for new talkers based on their understanding
of the distribution of auditory cues associated with each
linguistic category [14].

Therefore, this study reviewed models and methodologies that
are used in comprehending meaning from audio dysarthric
speech by means of speech-event representations, otherwise
known as situational projections. Following the fact that
familiarization formed the core paradigm of the reviewed works
as a technique that affords listeners an opportunity to retune
their stored linguistic representations [15,16], the following key
research question arose: following the unique characteristics of
each speaker, how do the reviewed models generalize over new
dysarthric speech given the specificity of the speaker? This
study discusses the approaches used in generalizing
speaker-listener underpinnings in relation to familiarization in
light of ontology extraction as a technique of interest.

Methods

Goal and Review Questions

Goal of the Study
The goal of this study was to systematically map (classify),
review, and synthesize studies that focus on the use of natural
language processing and natural language understanding (NLU)
in extracting meaning from dysarthric speech. Moreover, this
study aimed to detect recent trends and directions of the field
to identify opportunities for future research from both
researchers’ and practitioners’ perspectives. Guided by the
established guidelines for conducting systematic literature
review studies [17] and the established procedure for reporting
the findings of the review [18,19], the selection and review
process was developed and reported. Based on the above goal,
review questions (RQs) were raised and grouped under 1 of 2
categories.

Category 1 RQs
The following RQs were general to all systematic literature
review studies:
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1. RQ 1.1. Mapping of studies by contribution types: what are
the contributions presented in the studies? The motivation
for this RQ is that the contribution identified in the
respective studies largely influences the nature of the
proposed solution regarding whether they are approaches,
methods, or tools for contextualizing or comprehending
dysarthric speech.

2. RQ 1.2. Mapping of studies by research method types: how
many studies presented empirical or theoretical
frameworks? Following the multidisciplinary nature of this
study, it was likely that the manner of comprehending
dysarthric speech would vary, hence this RQ.

Category 2 RQs
The following RQs were specific to the topic (contextualizing
dysarthric speech):

1. RQ 2.1. The mode of meaning extraction used: what modes
of meaning extraction were used in the models and
approaches of the reviewed studies? The main rationale for
this RQ was to investigate how different studies tended to
include or exclude the listener decoding process from the
meaning extraction process as influenced by both their
inputs and output.

2. RQ 2.2. The nature of word representations used: what is
the nature and ability of the word representation used in
the meaning extraction from dysarthric speech? Due to the
ability of different word representations used within the

reviewed studies, such as word vectors, context vectors,
and ontology web vectors, it was necessary to ask this
question.

3. RQ 2.3. Data sources: what data sources were used to train
the meaning extraction models? This RQ was formulated
for the purpose of assessing the richness of the solution
offered by the reviewed studies.

Search Strategy
This systematic review was reported in accordance with the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines [18,19]. A comprehensive
literature search was conducted on 7 databases from inception
to 2023 to identify relevant articles. The databases searched
included the Cochrane Database of Systematic Reviews, Web
of Science Core Collection, Scopus, PubMed, ACM, IEEE
Xplore, and Google Scholar for studies reporting meaning
extraction tools, approaches, and methods for dysarthric speech.

The selection of articles is presented in Figure 1. Further, we
defined search strings for each database searched, in accordance
with the PICO (Problem, Intervention, Comparison, and
Outcome) structure [20] (Multimedia Appendix 1). The
keywords for the PICO structure were guided by the general
question “can listener-based natural language processing models
and approaches improve the comprehension of dysarthric
speech?”

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart for the selection of systematic review literature.
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The following sentences further describe the PICO structure
followed:

1. Problem: studies related to dysarthria or dysarthric speech
and variations (“dysarthria” OR “dysarthric” OR
“dysarthrias” OR “dysarthrics”).

2. Intervention: studies related to natural language processing
approaches or techniques used for speech comprehension
and their synonyms or abbreviations (“natural language
processing” OR “NLP” OR “natural language
understanding” OR “NLU” OR “automated speech
recognition” OR “intelligibility” OR “listener*” OR “listen”
OR “technique” OR “approach”).

3. Comparison: given the significant difference in our
objectives and goals from those of past research on the
topic, there were no comparable studies to use as a baseline.

4. Output: comprehension tasks and synonyms arising from
the use of natural language processing approaches
(“comprehension” OR “meaning” OR “contextualization*”
OR “context*” OR “comprehension*” OR “comprehend”
OR “understand”).

Using “AND” and “OR” operators to link these ideas, we came
up with the following general search phrase: (“Dysarthria” OR
“Dysarthric” OR “Dysarthrias” OR “Dysarthrics”) AND
(“natural language processing” OR “NLP” OR “natural language
understanding” OR “NLU” OR “automated speech recognition”
OR “intelligibility” OR “listener*” OR “listen” OR “technique”
OR “approach”) AND (“comprehension” OR “meaning” OR
“context” OR “contextualization” OR “comprehend” OR
“understand”). Slight variations depending on the databases
searched are documented in Multimedia Appendix 2.

Inclusion and Exclusion Criteria
Out of 834 search results, a total of 30 studies were included
for review. Studies that were included must have fulfilled the
following criteria: (1) studies that focused on meaning extraction
and not just on intelligibility, (2) studies that focused on
dysarthric speech, and (3) studies that clearly defined
approaches, tools, or methods for dysarthric speech
comprehension.

Studies that were excluded included the following: (1) literature
investigating other speech disorders, such as aphasia; (2) studies
which conducted other speech tasks, such as measuring the
severity of dysarthria, classification of dysarthric type, and
assessment of the speaker’s dysarthric level; (3) literature that
did not apply natural language processing interventions, such
as speech therapy rehabilitation or clinical approaches; (4)
literature that focused on dysarthric speech features or
characteristics, leaving out dysarthric speech patterns; and (5)
studies that solely focused on dysarthric speech intelligibility
and not its comprehensibility.

CADIMA systematic review software [21] was used for
screening automation. A 2-stage screening process was used.
To reduce bias, 2 reviewers screened all titles and abstracts.
The first step assessing relevance to the inclusion criteria was
performed by the 2 researchers independently, and the papers
passed to the next step if at least 1 reviewer decided so. In the
events where consensus at the title and abstract level screening

could not be achieved between the 2 reviewers an adjudication
sourced from a third person on a consultation basis was sought.

During the second stage, 2 independent reviewers performed a
full-text blind review, with consensus obtained after deliberation
between reviewers, when required. The consensus meetings
were held to resolve disagreements and uncertainty. Finally,
the objectivity of the criteria was assessed, either prereview on
a test set by measuring agreement or postreview.

Data Synthesis and Analysis
As per the RQs, the following information points were recorded
and analyzed: (1) year of publication, (2) contribution of each
study, (3) categorization of each study per the relevant research
method type, (4) mode of meaning extraction used in each study,
(5) nature of word representation used in light of their abilities
to effectively extract meaning from dysarthric speech, (6) speech
patterns considered, and (7) data sources used in the studies.
Tables and graphs were developed to summarize the information
points.

Quality Assessment
Quality assessment was conducted by 2 independent reviewers
on 2 levels. First, the overall assessment of the quality of studies
was chosen to be reviewed, and second, the risk of bias (ROB)
was assessed. After completing the independent assessments,
areas of discrepancies in each of the reviewers’ evaluations
were identified. A constructive discussion of the identified
discrepancies ensued for purposes of highlighting the reasons
for the differing assessments. Active reference to the study
protocol used [22] formed the main basis for a consensus to be
achieved during these discussions.

The goal of the quality assessment was to determine the
significance of each chosen document. We described the
evaluation largely to reflect the validity of the chosen studies,
even if the quality rating had no bearing on the choice of the
primary investigations. The study’s compliance with the
TRIPOD (Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis) [22] standard
served as a gauge of its quality. Each article was given 1 or 0
points depending on how closely the TRIPOD checklist was
followed or not. Additionally, every paper that was reviewed
scored higher than 50%. For more information on the outcomes
of the TRIPOD assessment standards, see Multimedia Appendix
3.

Given that the participants of the studies reviewed patients with
dysarthria, the Cochrane RoB2 tool was used to assess the ROB.
Results of the domain-specific and overall ROB assessment
ratings of the set of 30 studies are shown in Figure 2. The
individual ROB ratings of all studies are included in Multimedia
Appendix 4. The ROB was assessed using 5 domains, including
randomization process bias, deviation from intended outcome
bias, missing outcome data bias, measure of outcome bias, and
selection of reported results bias.

In the randomization process bias domain, 20 (67%) studies
were rated as low ROB, 6 (20%) as causing some concern, and
4 (13%) as bearing no information needed. These ratings
indicated that little bias occurs when a trial’s results are affected
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by human choices or other factors not related to the treatment
being tested. In the deviation from intended outcome bias
domain, 21 (70%) studies were rated as low ROB due to a
majority of the studies being specific in their outcome either as
actual solutions or empirical solutions, weak or strong as they
may be (Figure 3). Furthermore, 8 (27%) studies were rated as

causing some concern and only 1 (3%) study as bearing high
ROB. This may be attributed to the primary goal of this review
where the studies selected were focused on achieving
comprehensibility, yet a majority tended to skew more toward
intelligibility.

Figure 2. Summary of the risk of bias assessment.

Figure 3. Cumulative trend of the mapping of studies by research method type.

The missing outcome data bias domain comprised the lowest
proportion (n=18; 60%) of low ROB ratings among all 5
domains in our investigation and the highest proportion (n=12;
40%) of somewhat concerning ROB ratings. This may have
been posed by a majority of studies not reporting the clear state
or data type of the data churned out of their proposed solution
for use in dysarthric speech comprehension. The measure of
outcome bias domain comprised the highest proportion (n=29;
97%) of low ROB ratings among all 5 domains in our
investigation. Only 1 (3%) study somehow concerns ROB. The
main reasons for the high ROB were strong internal and external
validation used in a majority of the studies as a means of
quantifying the effectiveness of the proposed solutions therein.

In the selection of reported results bias, 24 (80%) studies had
low ROB with 6 (20%) of the studies causing some concern
over the ROB. Overall, only 23 (77%) studies received a low

ROB rating, whereas 7 (33%) studies were judged to have a
somewhat concerning ROB. Of these 7 studies, 1 [23] received
a high ROB rating on deviation from intended outcome as
intelligibility rose as its core objective instead of
comprehensibility.

Results

This section is structured according to the classification of
studies and technical issues regarding the contextualization of
dysarthric speech.

Classification of Studies
First, the studies were classified according to their contribution.
We discovered 4 apparent contributions from the studies: (1)
hybrid (a combination of clinical and NLU approaches), which
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formed approximate 17% (n=5) of the pool; (2) NLU techniques,
which formed 43% (n=13) of the pool; (3) theoretical
approaches, which formed 10% (n=3) of the pool; and (4)
clinical therapy approached, which formed 30% (n=9) of the
pool. Generic acoustic tools and theoretical tools were grouped
into 1 category following the fact that the acoustic concepts
applied in both studies were similar.

The studies were mapped by research method type. The
identified research methods from the studies were weak
empirical studies, strong empirical studies, pure theoretical
studies, and studies bearing proposed solutions that intended to
derive meaning from dysarthric speech. As illustrated in the
cumulative trend diagram in Figure 3, earlier studies
(2015-2019) attracted a majority of weak empirical studies on
dysarthric speech comprehension, with strong empirical studies
having their onset from 2016 onwards. The distribution of pure
theoretical studies was sparse through the years, while studies
proposing actual solutions for meaning extraction from
dysarthric speech appeared mainly from 2018 onwards.

Technical Issues Specific to the Topic (Contextualizing
Dysarthric Speech)

Mode of Meaning Extraction Used
It was important to establish the mode of meaning extraction
from dysarthric speech to aid in showing how different studies
acknowledged the role of the listener in remediating dysarthric
speech. The mode of meaning included the specific speech
inputs into the proposed models. Studies that solely used speech
features [15,24-35] were heavily speaker-dependent on their
approach and tended to lean more toward intelligibility of the
dysarthric speaker than their comprehensibility.

Studies that emphasized speech patterns [23,27,36-42] were
interested in the formation of words spoken, omissions in their
patterns, and inclusion of interesting vocabulary during
discourse. These studies were much aligned toward word
representation and drawing meaning out of the same by
leveraging other speech-independent features, such as the
speakers’emotions. Closely tied to studies that relied on speech
pattern were studies that used semantic knowledge [43,44] that
mostly worked by combining language rules, background
knowledge, and semantic change patterns so as to understand
semantic similarity-based relevance between questions and
corresponding answer sentences.

Finally, studies that had a hybrid approach [23,45-51] combined
speech features, speech patterns, and semantic knowledge so
as to go beyond the mere task of intelligibility and pose
questions on possible comprehensibility of the speech being
studied. These studies incorporated the use of familiarization
and topic knowledge techniques.

Nature of Speech Representations Used
Investigating the nature of the word representation was
instrumental in establishing the robustness of the approaches,
tools, or solutions proposed in the studies reviewed. Whereas
some representations, such as Fourier transformation and
Mel-frequency cepstral coefficients (MFCC), are popular in
speech processing, their abilities to handle dimensions of

semantic knowledge are questionable [5,13]. It is worth noting
that for most studies that used MFCC [28,29,31,35,36,47],
variations of artificial neural networks were used in all except
one [26], in which a stochastic model was applied.

This uniformity was unlike the case in studies that used no
representation at all [24,25,27,30,32,37,44,46] in which a mix
of models ranging from hybrid (neural models and clinical
approaches) to support vectors were used. The tasks of this
category mostly involved assessment of intelligibility in domain
specific cases of dysarthria, such as Parkinson disease, or any
other noise, with comprehensibility being a secondary or aiding
factor.

The studies that used vector encoding [15,38-43,50,51] used
NLU-based models, such long short-term memory neural
networks or combinations of gated recurrent unit and
convolutional neural networks to achieve the tasks of dialogue
assessment in dysarthric speech, language understanding, and
semantic pattern tracking.

Finally, studies that used a hybrid approach [23,33,34,45,48,49]
combined MFCC with variations of vector encoding. These
studies were characterized by variations of models, such as
adversarial networks, support vector machines, gated recurrent
unit and convolutional neural networks, and hidden Markov
models. The tasks in each of these studies also varied and were
very heavily geared toward reconstruction of dysarthria through
assessment of the semantics presented.

Databases Used
The choice of the database used was assessed to ascertain the
depth of the approach, tool, or solution proposed in the reviewed
studies. This was important in informing this study of the
flexibility of data used in achieving dysarthric speech
comprehensibility. Extensive and well-documented databases,
such as the TORGO database and the UA-Speech database,
contain data sets that have the potential to yield the in-depth
speech patterns necessary for speech comprehension. Studies
that used these 2 databases [26,31] (n=2; 6% of the studies) or
a hybrid of any other databases (n=11; 37% of the studies)
[28,33,37-41,47-49,51] focused more on the application of the
data in their proposed models, with little effort going into
curation and preprocessing of the data.

However, a majority of the reviewed studies (n=17; 57% of the
studies) involved audio data that were primarily sourced. These
studies [15,23-25,27,29,30,32,34-36,42-46,50] foremost curated
the data and augmented their input data representations to
accommodate features that ordinary speech representations
would not have accommodated in their natural form. Further
models for speech processing were developed and these
representations were used to train the models.

Discussion

Summary of Findings
The ultimate purpose of this study was to gain an in-depth
understanding of the current state of research in remote sensing
for the comprehension of dysarthric speech, to give suggestions
about future lines of research, and to find new possibilities and
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application areas. This can be achieved by an analysis and
discussion of the results presented in the previous section.

The mapping of contributions made by the reviewed studies
indicated that mostly NLU or clinical approaches were used.
This was evidenced in the findings of reviewed method types
where the number of actual proposed solutions only began to
rise in 2020, having been preceded by empirical studies that
perhaps meant to justify the suitability of the clinical approaches
used.

The mapping of studies by method types also indicated an
increase in theoretical research from 2020 onwards, which bore
the theoretical framework necessary for justifying the new actual
proposed solutions for extracting meaning from dysarthric
speech. Studies preceding 2018 were mostly characterized by
weak empirical or pure theoretical studies.

It is worth noting that a majority of the studies heavily relied
on speaker-dependent speech features, thereby leaning more
toward intelligibility with little focus on the semantics of the
speech input. Studies that solely used speech features were
biased toward performing dysarthric speech intelligibility tasks
as opposed to comprehensibility. This was contrary to studies
that used speech patterns, semantic knowledge, or a hybrid of
the two, which aimed at applying rules, background knowledge,
and familiarity features in order to comprehend dysarthric
speech.

The use of vector representation was a prominent speech
representation used in a majority of the studies; this was in
tandem with the findings of the contributions made by the
reviewed studies, given that most natural language processing
models or approaches preferred to use vectors and no
representation approach solutions. Whereas vector-based
representations were largely applied in NLU models, MFCC
representations as well as studies that applied no representation
were mostly applied in variations of artificial neural networks
or a mix thereof. The studies that applied hybrid representation
were unique in the sense that they delved more toward
reconstructing dysarthric speech or assessing approaches for
reconstructing dysarthric speech so as to achieve better meaning.

Comprehensive databases, such as TORGO and UA-Speech,
were rarely used in solitude; their combination with other
curated databases resulted in a slightly higher number of hybrid
data sources compared to TORGO or UA-Speech independently.
The majority of studies, however, used primary data curated
for specific tasks intended for the objective.

Implications
With NLU studies gaining traction from 2020 onwards, and a
number of NLU approaches being hybridized with clinical
approaches, there is an inference that dysarthria is indeed
deemed a major medical condition warranting a similar approach
[52-54]. This is pegged heavily on the need of such approaches
to be dependent on human intervention, which has been the
norm over the past few years of dysarthric speech research.

This posits that the proposition of a speech comprehensibility
solution for dysarthric speech may, both in the present and
future, rely on clinical findings to inform the models being

proposed. While this dependence on clinical approaches may
possibly be seen as being problematic to potential stand-alone
NLU approaches, it may be appraised as a potential strength
for informing the overall generalizability of the approaches,
particularly with regard to providing speaker-specific meaning
extraction [12,55]. Where generalizability is high, the human
intensive effort that would have been put in becomes rigorous.
As such, there arises a need for models that are both
speech-dependent and speech-independent to allow for a
variation of features necessary for achieving comprehension
[2].

There has been limited breakthrough in the study of speech
comprehension models with the onset of actual proposed
solutions from 2020 onwards, as the findings indicate that a
merely theoretical approach was followed, meaning that the
output of these studies are theoretical frameworks as opposed
to actual solutions. This perhaps may be tied to either a lack of
sufficient data needed as primary inputs to the proposed
frameworks or a narrow technical gap presented by the same
[26,56]. This can be reflected by the vast use of primary data
by most of the reviewed studies as opposed to existing databases,
perhaps out of a lack of sufficient data within the existing
dysarthria speech databases.

The slim gap problem faced by existing theoretical frameworks
involves the significant assumption made that intelligibility is
similar to comprehensibility [57]. This is reflected by much
reliance on speech features as opposed to speech patterns that
would require more data points to draw meaning. This
assumption has resulted in the formulation of representations
that are not sufficient to perform a speech contextualizing task,
which goes beyond a simple translation of the words spoken
[5,13]. It is suggested that intelligibility be treated as an
objectively different task from comprehensibility, which in this
study is deemed as the message derived from speech given both
speech-dependent and speech-independent factors.

Additionally, the limitation in the gap for the presently existing
theoretical frameworks may first be attributed to a biased
definition of redefining familiarity, which alludes to a heavy
connotation in communication theory. There is need to redefine
familiarity as a projection of word feature vectors into the
d-dimensional semantic word space with consideration of a set
of classes that constitute several situational markers, such as
topic events and emotional events [7,58]. This shall be useful
to natural language models that seek to incorporate such vectors
as inputs necessary for inferring context of speech and thereby
comprehending speech.

Limitations
This study is limited to only a review of 30 studies by virtue of
the scope of the study that sought to review methods and
approaches used to comprehend dysarthric speech using
techniques of natural language processing. The strict definition
of comprehension left out a number of studies whose task solely
focused on intelligibility as a task. Additionally, the study was
limited to the previously discussed research questions and as
such did not address other prominent techniques, such as the
use of additional techniques (eg, computer vision) while
attempting to comprehend dysarthric speech. This followed the
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fact that the comprehension of speech could be limited to a few
speech-related events for the purposes of meaning extraction,
as much as additional nonspeech features would enrich the
discussed methods and approaches.

Conclusion
By reviewing the relevant studies, this systematic review
mapped and reviewed the body of knowledge on studies that
attempted to extract meaning from the inputs and generic nature
of dysarthric speech. In total, 30 papers were systematically
reviewed and synthesized in accordance with the formulated
RQs. Following this summary, this paper provides an index of
the vast body of knowledge in this area. An important finding

ensuing from this study was that actual meaning extraction was
minimal, with a majority of the studies leaning toward speech
intelligibility solely. This general finding is important as it
informs communication scholars and dysarthria clinical experts
of the crucial need to include the listener as a party during
meaning extraction experiments. This finding is also important
for NLU experts who need to formulate representations that are
robust enough to incorporate listener factors, such as familiarity,
topic knowledge, and nonspeech events, that may bear pointers
toward the meaning of dysarthric speech. Therefore, this study
presents to the science community the need for further research
with regard to the formulation of semantic ontologies that will
be useful in NLU for meaning extraction.
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