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Abstract

Background: As global positioning system (GPS) measurement is getting more precise and affordable, health researchers can
now objectively measure mobility using GPS sensors. Available systems, however, often lack data security and means of adaptation
and often rely on a permanent internet connection.

Objective: To overcome these issues, we aimed to develop and test an easy-to-use, easy-to-adapt, and offline working app using
smartphone sensors (GPS and accelerometry) for the quantification of mobility parameters.

Methods: An Android app, a server backend, and a specialized analysis pipeline have been developed (development substudy).
Parameters of mobility by the study team members were extracted from the recorded GPS data using existing and newly developed
algorithms. Test measurements were performed with participants to complete accuracy and reliability tests (accuracy substudy).
Usability was examined by interviewing community-dwelling older adults after 1 week of device use, followed by an iterative
app design process (usability substudy).

Results: The study protocol and the software toolchain worked reliably and accurately, even under suboptimal conditions, such
as narrow streets and rural areas. The developed algorithms had high accuracy (97.4% correctness, F1-score=0.975) in distinguishing
dwelling periods from moving intervals. The accuracy of the stop/trip classification is fundamental to second-order analyses such
as the time out of home, as they rely on a precise discrimination between the 2 classes. The usability of the app and the study
protocol was piloted with older adults, which showed low barriers and easy implementation into daily routines.

Conclusions: Based on accuracy analyses and users’ experience with the proposed system for GPS assessments, the developed
algorithm showed great potential for app-based estimation of mobility in diverse health research contexts, including mobility
patterns of community-dwelling older adults living in rural areas.
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Introduction

From a functional perspective, mobility can be defined as the
“ability to move oneself independently from one point to
another” [1]. In the last years, broad conceptions of mobility
that integrate individual mobility behavior (eg, mobility patterns)
with environmental factors (eg, built environment or
transportation modes) have gained importance [2,3]. Despite
this development, in health sciences, most studies still assess
mobility using self-report questionnaires that come along with
self-reporting biases such as overestimating the time spent being
active [2,4,5]. To allow for a more objective measurement of
mobility, personal factors and environmental differences were
integrated with data collected via a global positioning system
(GPS) and data from geographic information systems (GISs)
[6]. Especially, as the use of global navigation satellite systems
such as GPS has become more reliable and less costly, the
number of related studies has increased substantially. Among
the various studies performed in this regard, researchers have
examined the relationship between real-life mobility (eg,
assessed through GPS) and health outcomes such as depressive
symptoms [7,8], cognitive functioning [9,10], and general health
status [11,12]. GPS/GIS-based mobility patterns further have
the potential to inform about health behaviors such as physical
activity outside the home and routines in mobility behavior (eg,
time of the day first moved or revisited locations). Moreover,
frameworks to guide the analysis under spatial and temporal
aspects or attributes of movement (eg, active transport by foot
or passive motorized transport) have been developed over time
and include GPS-derived outcomes of life or activity space
[13,14].

There are several devices with underlying server infrastructure
and data analysis pipelines capable of GPS tracking, including
GPS watches, smartphones, and trackers such as the frequently
used Qstarz device (ie, BT-Q100XT; QStarz International Co,
Ltd) [15].

However, several aspects, such as accuracy, data security, and
offline use, must be considered when working with GPS devices.
For instance, data by Lee et al [16] showed that although
accuracy ranged widely across studies and devices, overall these
devices can be considered good. To adequately assess
environmental interaction and human mobility behavior (eg,
attributes of location and revisited locations), precisely
identifying visited locations and trips between these locations
is crucial [17].

For data security, most devices use preexisting software, where
server locations remain with the software provider, and scientists
may not be able to adequately adapt or change the output [15].
In addition, not every GPS assessment device supports offline
use, which may be required to offer solutions applicable in
combination with high data-protection standards or assessment
of GPS data in rural areas without an internet connection.

The usability of GPS sensors, including those implemented in
mobile devices, has been shown to be high in diverse groups
of participants, including schoolchildren [18], commuting
working adults [19], or community-dwelling older adults.
Nonetheless, technical and usability obstacles have been

reported and must be evaluated in different areas and
populations, including in health promotion, disease prevention,
therapeutic, and rehabilitation settings and research.

The aim of this study is to demonstrate a multicomponent system
for conducting GPS-based studies, including an easy-to-use,
low-cost, and easy-to-adapt smartphone app, over longer
sampling intervals without a permanent internet connection and
respective analysis pipeline.

Methods

Overview
This study was conducted in the context of the MOBILE study
(Mobility in Old Age by Integrating Health Care and Personal
Network Resources in Older Adults Living in Rural Areas)
funded by the German Federal Ministry of Education and
Research (grant number 01GY1803), an interventional study
focusing on promoting out-of-home mobility including
GPS-based mobility outcomes. The development of the technical
components in measuring GPS-based outcomes is described in
this paper.

While developing the GPS for the study’s purpose, we describe
3 consecutive steps: (1) outline each component of the system
(development substudy); (2) report an integration study
evaluating the system’s capabilities to derive accurate variables
about users’ activity behavior (accuracy substudy); and finally,
(3) examine the user experience in a sample of
community-dwelling older adults and describe an iterative app
design process to further optimize the usability for this specific
group of users (usability substudy).

Development of the App and Analysis Pipeline
In the first step of developing the GPS we created the system
architecture, which consists of an Android (Google Inc/Alphabet
Inc) smartphone app, a remote server, and an analysis pipeline.
All components are described in more detail in the following
sections.

This architecture allows for much flexibility as it does not
require particular hardware or privacy policies concerning server
hosting. The server is hosted at Technical University Berlin,
which ensures data security and GDPR (General Data Protection
Regulation) conformity of the European Union.

The GPS.Rec2.0 Mobile App
The mobile app (GPS.Rec2.0) can be deployed on most phones
running Android versions 6.0 or above. We deliberately
supported this rather dated operating system version, because
it allows us to support a wide bandwidth of different devices.
The app offers a simple interface to configure recording
parameters such as sample frequency and GPS accuracy. It can
be configured to automatically start in the background after a
reboot, which is particularly useful for intervention scenarios
in which participants need to charge the devices. Other than
this, the users are not expected to interact with the app in any
way. The app stores several millions of records on the internal
memory of the device. As soon as an internet connection is
established (eg, in the laboratory, after an intervention), it
transfers all the records to a configured server destination. This
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way, researchers access the recorded data retrospectively and
ensure privacy matters simultaneously (ie, no live tracking
possible). This design also allows us to have minimum
interaction so participants are not distracted in their everyday
lives. Our study protocol foresees participants to plug the phone
into a charger at home and take the phone with them whenever
they leave the house. Other than that, no interaction with the
phone is necessary. In addition, this setup allows us to use
comparably inexpensive smartphone hardware. We performed
our tests on ZTE’s Blade A5 (2019), a basic, entry-level
smartphone costing around €50 (US $54). When deciding on a
hardware platform, we tested several devices offering at least
16-GB memory space, 1-GB RAM, and 1000 mAh battery
capacity. The latter is probably the most critical specification
as it allows the system to run and continuously record data even
when participants forget to charge it for 1 night. Further,
reducing the GPS query frequency helps to reduce battery
consumption. We set a 10-second interval for acquiring position
data.

In addition to recording GPS position data, the app records
physical motion using the 3-axis accelerometer. The physical
motion data are added to the analysis pipeline and further
improve data quality as they help to distinguish between motion
and stillness. The sampling frequency was set to 1 Hz, which
was found to be suitable for our purpose. The smartphone app

is free software under the GNU General Public License version
3.0.

Server Backend
The backend server is a dockerized Ruby on Rails app offering
2 main components. First, it acts as a backend for the
smartphone and provides a REST API (representational state
transfer application programming interface) to retrieve recorded
data from the study smartphones once they are back in our
laboratories. This communication is SSL (secure sockets layer)
encrypted using Let’s Encrypt certificates (Internet Security
Research Group). As we provide the software in a dockerized
format, researchers can deploy this backend quickly on their
servers and need not rely on any third-party service. This way,
we ensure compliance with local privacy policies.

The second component of the server app is a user interface for
visualizing the raw records obtained from different users
participating in the study (Figure 1). Here, users and time
intervals can be filtered, visualized, and directly downloaded
as a CSV (comma-separated values) file for further processing
and analysis. This tool is particularly useful for visual feedback
if data are received and if the selected time interval contains the
expected information. Although this interface is potentially
reachable from the internet, users need to authenticate
themselves using the same credentials (username and password)
needed to log-in to the mobile app. The server backend is free
software under the GNU General Public License version 3.0.

Figure 1. Screenshot of the server components user interface. It provides a straightforward assessment of the raw records given by a user ID and a time
interval.

Analysis Pipeline
The data analysis is provided as Python3 (The Python Software
Foundation) libraries. Although fully featured GIS tools such
as ArcGIS Pro (Esri) or QGIS (QGIS Development Team) exist,
we decided to create a new analysis pipeline for faster batch
processing up to several hundred study data sets. This
streamlines the process and provides better accuracy, as we will
demonstrate in the “Results” section.

The analysis is based on the Stop & Go Classifier, which
identifies stop and trip intervals within the data set. As most
mobility variables are based on this first distinction rather than
raw GPS point clouds, this is the fundamental first step. For
example, variables such as the number of “revisited places,”
“time out of home,” or the “time spent in transit” can be directly
constructed after an initial stop/trip interval detection. However,
other metrics, such as the “perimeter of the convex hull,” are
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constructed based on individual GPS points instead of only a
list of identified important locations.

Figure 2 visualizes the data flow through the analysis pipeline.
First, the data are recorded on a mobile device and stored locally.
Later, when securely connected to the internet, the mobile app
copies the recorded data to our private cloud, the server app.
The server securely stores all samples (GPS and accelerometer
data) from all users over the entire study period. If necessary,
this provides a central access point for analyses, even for
multiple analysts. The third phase is data analysis. We first
consult the study protocol to carve out the study period for each
user precisely. This is a necessary technicality because we
shipped the configured study smartphones to the participants
via postal service for this study. As a result, the supplied phones
often also recorded the shipping routes. Therefore, our
participants were instructed to start using the phone 1 day after
receiving it through the postal mail. Thus, for the analysis, it
was necessary to trim the start and end dates of the recorded
data according to the actual study dates. Using the correct study
dates, we accessed the web server and downloaded only records
in the interval of interest. The downloaded data contained raw

GPS and accelerometer samples and several status information
of the recording device (eg, battery status and time stamps). In
the preprocessing phase, basic filters are applied, such as
removing duplicates and converting the accelerometer records
into a motion score that describes the physical motion the
recording device underwent at any given moment [20]. Lastly,
the data are fed into the Stop & Go Classifier described earlier
to identify trips and stops before the final set of features is
extracted from all data available.

The analysis pipeline is designed in such a way that it reads a
given CSV containing GPS and (optionally) accelerometry data,
processes these, and outputs several result tables. These contain
a list of all the important locations in a data set (ie, the stop
intervals) and a detailed analysis of all variables of interest per
day.

Table 1 provides a list of potential variables that may interest
health researchers using the presented mobility analysis software
framework. The list distinguishes variables based on all GPS
samples and integrated variables built up using the stop/trip
detection metrics.

Figure 2. Flowchart of the data acquisition, storage, and processing steps. The analysis phase consists of several subtasks to determine the correct study
interval, preprocess the raw GPS (and accelerometer) records, run the stop/trip classification, and combine its results into a feature vector of the variables
of interest. GPS: global positioning system.
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Table 1. A list of all measures observed and calculated from the raw GPSa and acceleration data collected during the trial.

DescriptionSource and variable

Based on all samples

Period of movementTrip

>5 minutes at the same place (within a radius of 100 m)Stop

Maximum radius from home per dayMaximum distance from home (daily)

Average distance from home per dayAverage distance from home (daily)

The minimum span ellipse that can fit all of the positions of the data set
that is computed using a minimum covariance estimator [9,13,21]

Area standard ellipse (daily)

Life-space measure [13,22]; see Figure 3Area convex hull (including perimeter, surface, compactness)

Percentage of the daily convex hull that has overlap with any convex hulls
of the other included study days

Daily revisited life space %

Average percentage overlap of the daily convex hull with the convex hulls
of the other included study days

Average revisited life space %

Daily path area (DPA) is created by buffering each individual’s GPS trip
with a 200-m buffer zone, then dissolving all buffered trips into 1 polygon
and removing bodies of water [16,23]

Daily path area

Based on stop/trip intervals

Home address, special case of stopHome

Stop counts per dayNumber of locations (daily)

Stop counts per dayNumber of revisited locations (daily)

Unique stop counts per dayNumber of unique locations (daily)

Time out of homeDaily duration (daily)

Total trip time done by foot/bike [13,24]Time on foot/bike

Total trip time done by car/public transport [13,24]Time in vehicle

Average time spent at home [9]Average time at home (daily)

Time of the day of first tripTime of the day first move

Time of the day of most trips in the categories morning/noon/eveningTime most moved

Percentage of identical trips among all tripsRevisited paths %

Entropy is a measure for time distribution over different stop locations.
A higher entropy either indicates a more regular time distribution with a
higher number of locations or a higher number of locations [7].

Entropy in location

aGPS: global positioning system.
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Figure 3. Hull curve around the position records of the whole example time span.

Accuracy Evaluation Using a GPS Diary
To evaluate the validity of our analysis scripts, we conducted
a field test dedicated to collecting GPS and acceleration data
under realistic conditions and combined these data with a diary
study. While the devices ran as we used them in the field
(parameters described in the “The GPS.Rec2.0 Mobile App”
section), the diary contains changes of place, reference positions,
and the beginning and ending of each stay. This way, we can
compare the recorded data and their analysis with the ground
truth of the testers involved. To obtain the most accurate
reference data, we created a diary app (iOS app, run on iPhone
XR) to log whenever a test person enters or leaves a position.
This way, we can ensure precise tracking and digitally obtain
time stamps and position data. For accuracy analysis, we focused
on comparing exact timings of location changes, position
deviations, durations of movement, and durations of dwell.

The diary contained 3 pieces of information per record: the
beginning and end time of a stop, coordinates of the location
(ie, longitude and latitude), and a reverse lookup address for
easier identification of the samples. Position and time stamp
are the only information we need to validate the automatic
stop/trip detection of the GPS records.

Having stop intervals in the diary as ground truth, we labeled
each GPS record from the mobile app as either “stop” or “trip.”
Simultaneously, we ran the analysis pipeline to classify the raw,
unlabeled GPS data set. This allowed us to obtain 2 sets of labels
based on the diary and algorithmic analyses, which we can use
to quantify the goodness of the classification.

Usability in a Sample of Community-Dwelling Older
Adults
As the GPS.Rec2.0 app is being used in the MOBILE study
with older adults (age ≥75), handling of the smartphone and
app was tested in a usability study with a convenience sample
of 9 participants (6 women and 3 men that were between 71
and 83 years of age and lived in a rural area of Brandenburg,
Germany). The sample size was oriented on similar studies such
as that by Brusilovskiy et al [25], who used GPS technologies
for community health engagement, or Price et al [26], who
performed a validation study for different GPS devices. The
usability study was conducted between July and September
2020 after the first wave of COVID-19 infections in Germany.
During this time, restrictions on social contact were still high
as no vaccination was available yet, and therefore all
components of the usability study were accomplished without
personal contact. Participants received the smartphone with an
installed preversion of the GPS.Rec2.0 app, study information,
consent paper, and a postservice usability questionnaire
(Multimedia Appendix 1).

In addition, they were contacted via telephone and informed
about how to turn on the phone, ensure that the app was running,
and sufficiently charge the battery by charging the smartphone
overnight, as well as requested to take the smartphone with
them on every trip outside for 7 consecutive days. For additional
usability, smartphones were prepared with stickers indicating
the needed functions (eg, where to charge the smartphone or
how to turn it on). After the testing phase, participants sent back
the phone, consent paper, and questionnaires. Further, they were
interviewed about their experiences within a structured phone
call. Data have been analyzed descriptively as well as with
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content analysis. The content analysis categorizes interview
content to examine patterns in communication in a noninvasive
manner [27].

Ethical Approval
Ethical approval was obtained by the Charité Ethics Commission
embedded in the broader MOBILE study with the case number
EA1_052_20 on May 14, 2020. In the ethics statement the
implementation of a pilot study, including GPS device testing,
interviews, and questionnaires, was explicitly listed.

Results

Development of the App and Analysis Pipeline
All components were developed iteratively and tested regularly.
Apart from feature tests, testing the integration between
smartphones, backend, and analysis was most important during
the development process. Over the entire development period,
we implemented regular field tests to identify design or
implementation issues early on. The final app can record large
numbers of position samples over a long period, even without
a stable connection to the synchronize destination/backend. The
backend can synchronize multiple clients simultaneously and
cope with intermittent uploads (eg, disrupted internet connection
during the upload process). As a fallback strategy, the mobile
app can export GPX (GPS Exchange Format) files of the
recorded data. This covers severe problems with the syncing
process without losing any data.

In addition, the mobile phone’s battery life lasted at least two
days and presented itself as suitable for the study.

We developed the analysis pipeline simultaneously, allowing
us to iterate fast and reproduce design decisions of the backend
on the analysis pipeline (eg, functions to fetch data via APIs).
Furthermore, this allowed us to test outcomes and quantify
recording and analysis accuracies as soon as possible in the
development process.

Accuracy Evaluation Using a GPS Diary
Over 4 months between October 2021 and May 2022, we
recorded 692 stops using the GPS diary app (5.5 stops/day).
During the same period, the GPS.Rec2.0 app recorded 122,808
GPS samples (969.7/day; 1 every 89.1 seconds). This data set
is publicly available. To compare the diary records with the
results of our analysis pipeline, we used 2 approaches to quantify
the system’s accuracy. Based on true positives (sample
programmatically identified as a stop, which is a stop according
to the diary), true negatives (sample identified as a trip and was
recorded on a trip), false positives (identified as a stop but was
a trip), and false negative (identified as a trip but was a stop),
we analyzed balanced accuracy values (0.965) and F1-scores
(0.975). Besides that, the system can correctly label 97.40%
(119,614/122,808) of all samples.

While examining at the sample level is important to compare
classification performance with other classifiers, it seems
suitable to further examine analysis performance based on actual
stop intervals—as these are the measure of interest at this stage.
Furthermore, this allows the evaluation of systematic errors
more easily than simple sample-by-sample comparisons. Hence,
we aggregated the algorithmically obtained labels per sample
to form intervals of stops and trips. Out of the 692 stops known
to the diary, the system detected 667 stops; 97.3% (649/667)
of these detected stops were identified correctly (corresponding
to a similar time interval within the diary). The system, however,
failed to identify 26 stops and 33 trips. Compared with the
ground truth diary recordings, 19 diary stops were fragmented:
a fragmented stop is detected as a set of several individual stops
instead of 1 stop capturing the entire duration. This is an
important metric, as many subsequent mobility assessment
analyses buildup on these raw detected stops (eg, the average
number of significant locations per day per person is computed
using the total number of stops). Table 2 lists all relevant
classification results of our accuracy substudy.

Table 2. Classification performance of our Stop & Go algorithm that was used to distinguish dwelling intervals (stops) from transit intervals (trips).a

Stop & Go classification without motion scoreStop & Go classification including motion scorePerformance

118,865/122,808 (96.79)119,614/122,808 (97.40)Correct, n/N (%)

0.9660.965Balanced accuracy

0.9660.975F1-score

708/692667/692Stop counts (system/dairy), n

2626Missed stops, n

4319Fragmented stops, n

708/691667/691Trip counts (system/dairy), n

2833Missed trips, n

49.3133.12Runtime (seconds)

aOur algorithm can include accelerometer data to further refine results (ie, “motion score”); however, most conventional stop/trip classifiers do not offer
such a feature. For better comparability with other systems, we reported results for both with and without accelerometer data.
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Usability in a Sample of Community-Dwelling Older
Adults
Results of the questionnaire are reported in Table 3 and indicate
that the smartphone was easy to integrate into the everyday life
of the older adults interviewed. Participants reported little
worries about data security or damage to the cell phone (8/9,

89%, fully agreed), followed by worries about battery level,
damage, takeaway, and comprehensibility (6/9, 67%, fully
agreed in all cases). In the qualitative interviews, participants
described the need for a small belt bag to always carry the
smartphone around, especially during summer activities such
as gardening, shopping, or riding a bicycle.

Table 3. Questionnaire results of the usability substudy (n=9).

Fully agree, n (%)Somewhat agree, n (%)Rather disagree, n (%)Disagree, n (%)Variables

4 (44)5 (56)N/AN/AaJoy: I enjoyed the 7 days of testing.

5 (56)3 (33)1 (11)N/AIntegration: The use of the GPSb device is easy to inte-
grate into my everyday life.

1 (11)3 (33)1 (11)4 (44)Time and activity: While using the GPS device, I need
more time for my daily activities outside the home.

6 (67)2 (22)1 (11)N/ABattery level: The battery level lasts long enough for
everyday use.

N/A1 (11)2 (22)6 (67)Damage: I am afraid of damaging the GPS device.

6 (67)2 (22)1 (11)N/APrivacy: I think that my personal data collected with the
GPS device are properly protected.

6 (67)2 (22)1 (11)N/ATakeaway: I always remember to take the GPS device
with me when I leave the house.

6 (67)3 (33)N/AN/AComprehensibility: The external labeling of the GPS
device is easy to understand.

8 (89)N/A1 (11)N/ACharging: The GPS device is easy to charge.

8 (89)N/A1 (11)N/AHelp: When problems occur with the GPS device, I
know whom to contact for problem solving.

5 (56)4 (44)N/AN/AUsefulness: The data collected by the GPS device are
useful for (health) science.

1 (11)2 (22)1 (11)5 (56)Time: Filling out the questionnaires took too much time.

aN/A: not applicable (ie, no participant responded in the category).
bGPS: global positioning system.

Discussion

Principal Findings
This study aimed to develop a smartphone-GPS–based system
for mobility analyses in health research and to test this system
for accuracy and usability. Based on the experience of expert
and user stakeholders with the proposed system for assessing
GPS, it shows great potential for app-based estimation of
mobility in community-dwelling older people.

The main findings of this study are that the developed
GPS-based system works well for mobility analyses as the app
functions without technical difficulties and performed well even
under suboptimal conditions. Furthermore, the algorithm
achieves high accuracy and its usability was piloted with older
adults, which demonstrated low barriers and easy
implementation. The system includes the following: the
GPS.Rec2.0 app, a backend for centralized data storage, and an
associated analysis pipeline for the automatized transformation
of raw GPS data into predefined variables. The app showed
good accuracy in the accuracy substudy with staff members and
good usability in successive tests in the usability substudy,

which involved a sample of community-dwelling older adults
living in a rural area.

The comparison between the system with and without the
accelerometer data in Table 2 shows the most dominant
advantage in the fragmented stops metric. As the recording
device’s physical motion helps reduce the number of fragmented
stops by more than half (43 vs 19), the number of identified
stops is crucial for many mobility and daily activity indicators.
Hence, reducing fragmented stops is an important objective, as
fragmented stops artificially inflate the number of stops. Our
system, the signal processing Stop & Go algorithm, helps to
interpret GPS data more accurately. This component can be
used independently from our other components, as it is released
as a stand-alone open-source library [20].

Comparison With Prior Work
In terms of accuracy, our study showed good-to-very good
stop/trip identification results, which are comparable with other
studies investigating the accuracy in other systems (see Spang
et al [28] for a comparison of algorithms). One key element of
any mobility analysis system is the algorithm for classifying
trips and stops, which is the foundation for further mobility
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analyses. In terms of performance, our system showed higher
accuracy, F1-score, more true stops and trips, and fewer false
stops and trips than similar systems (MovingPandas and
scikit-mobility). Although our system outperformed the
reference systems in most areas, the number of missed trips was
detected better using MovingPandas. Concerning the usability
of the system, most participants indicated that the system is
easy to implement in everyday life, which is in line with findings
from other GPS usability studies in diverse urban adults [19]
showing high levels of GPS acceptability and usability as well
as low levels of wear-related concerns. Likewise, a study on
patients with cardiac issues from urban and rural areas found
low barriers and high ease of use; however, especially in rural
areas, the periodic signal interruption was reported [29]. Thus,
our approach provides a feasible tool not only in urban but also
in rural areas and for older adults who are often excluded from
GPS studies.

Strengths and Limitations
This study has several strengths, including the mixed methods
stepwise approach across substudies and the innovative system
pipeline. However, some limitations need to be considered when
interpreting these findings. First, although we developed an
open-source system ready to use, performing a new study would
require considerable resources and technical know-how. We
tried to mitigate this by providing detailed descriptions about
the source codes’ repository websites. This should make it easier
to adapt the tools we developed to new research projects and
swiftly test ideas. Second, we presented high levels of accuracy.
Nonetheless, misclassifications occurred, and thus, in the future
further algorithms are necessary to improve the classification
performance even further. We are actively developing the
classification module of the described system as a separate
open-source contribution. As such, we are working on parameter
tuning tools to provide easy and flexible setups, even for sensors
or sampling rates different from what we used. This should
further improve the reliability of the described toolchain. Third,
we tested the usability in community-dwelling older adults;
thus, although the system is quite generic and can likely be
applied to a variety of settings and populations, we cannot rule
out any usability issues in other populations. Future studies
should test the system’s usability in other health contexts and
cohorts, including urban areas or outpatient rehabilitation setting
and the labor force or students.

Two main advantages lie within our system. First, the app was
constructed for offline use, which has several positive attributes

(ie, longer battery life, high data protection, no live-tracking
possible), and thus has benefits over commercial GPS apps that
include mobile data. The second advantage is that the open
source development of the app includes the hosting of data on
university servers rather than relying on existing commercial
systems (eg, Qstarz or Garmin Forerunner; compare [15] with
potential limitations to data protection). It ensures maximum
data and privacy security and lets scientists alter the system
architecture if necessary.

Although this proposed system was developed for the use case
in health research with older adults, we assume that our systems
also work well in different study populations such as
schoolchildren or people with impairments. Furthermore, we
believe our system is suitable for various study designs, such
as observational or interventional studies.

Code Availability
The GPS.Rec2.0 app [30] is available as free software under a
GNU General Public License version 3.0. The backend
component [31] for storing, visualizing, and accessing recorded
position and accelerometer samples of the GPS.Rec2.0 app is
also available.

The classification component of the analysis pipeline is available
as an independent component, the Stop & Go Classifier. It is
free software under a BSD 3-Clause license.

The test data set [32], used to evaluate the classification data
set, was recorded using the described GPS.Rec2.0 app. The data
set contains GPS and acceleration records as well as stop/trip
annotations. It is publicly available at the Open Science
Framework under a CC-By Attribution 4.0 International license.

Future Directions and Conclusions
In future GPS-based health studies, the system and its algorithms
should be evaluated in a clinical study and analyzed with respect
to clinical, subjective, and behavioral measures. We explicitly
see potential for use in interventional studies, as it is a great
tool to evaluate interventions that, for instance, focus on
promoting out-of-home mobility, fostering new routines,
changing mobility habits, or following patients after cardiac
rehabilitation. As an individualized/tailored approach is used
often (compare [33,34]), we believe it is possible to develop
our system even further and add live feedback options for the
user. Overall, GPS-based measurements can add great value to
various study designs and populations and should be considered
and examined more often in health research.
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