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Abstract

Background: Performing physiotherapy exercises in front of a physiotherapist yields qualitative assessment notes and immediate
feedback. However, practicing the exercises at home lacks feedback on how well patients are performing the prescribed tasks.
The absence of proper feedback might result in patients performing the exercises incorrectly, which could worsen their condition.
We present an approach to generate performance scores to enable tracking the progress by both the patient at home and the
physiotherapist in the clinic.

Objective: This study aims to propose the use of 2 machine learning algorithms, dynamic time warping (DTW) and hidden
Markov model (HMM), to quantitatively assess the patient’s performance with respect to a reference.

Methods: Movement data were recorded using a motion sensor (Kinect V2), capable of detecting 25 joints in the human skeleton
model, and were compared with those of a reference. A total of 16 participants were recruited to perform 4 different exercises:
shoulder abduction, hip abduction, lunge, and sit-to-stand exercises. Their performance was compared with that of a physiotherapist
as a reference.

Results: Both algorithms showed a similar trend in assessing participant performance. However, their sensitivity levels were
different. Although DTW was more sensitive to small changes, HMM captured a general view of the performance, being less
sensitive to the details.

Conclusions: The chosen algorithms demonstrated their capacity to objectively assess the performance of physical therapy.
HMM may be more suitable in the early stages of a physiotherapy program to capture and report general performance, whereas
DTW could be used later to focus on the details. The scores enable the patient to monitor their daily performance. They can also
be reported back to the physiotherapist to track and assess patient progress, provide feedback, and adjust the exercise program if
needed.

(JMIR Rehabil Assist Technol 2020;7(2):e17289) doi: 10.2196/17289
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Introduction

Background
Rehabilitation is essential to regain lost or weakened
functionality after injury or surgery. Although it is commonly
initiated in a clinic and supervised by a physiotherapist, the
prescribed therapeutic exercises will normally need to be
practiced at home by patients on their own. Lack of motivation
and compliance may hinder the healing process and, in some
cases, even worsen the injury. Advances in virtual reality
technologies have resulted in various virtual rehabilitation
platforms introduced to address this issue [1-3]. They are
generally equipped with sensory devices to track and monitor
the patient’s movement when performing the exercises. Among
them are systems based on the concept of exergaming and
exercise gaming. These are interactive video games with some
simple scenarios that enable a patient to perform a therapeutic
exercise by playing the game. Exergames are a subgenre of
serious games developed for the purpose of encouraging exercise
and activity. Although sharing some aspects with medical
simulation, in exergames, the emphasis is more on the added
educational value of fun and entertainment. Accessibility (not
needing the constant presence of a physician) and
entertainability (turning repetitive tasks to playful activities)
are 2 key advantages of such systems.

The impact of serious games on physical therapy has been
studied in terms of effectiveness [4-6] and motivational
determinants [7,8]. However, as a virtual guide replacing or
complementing a real physician, exergaming systems tend to
lack objective, clinically meaningful evaluation of patient
performance. At best, game scores, the extent to which the
player achieved the goals of the game, are reported at the end
of the session along with statistics such as completion time. The
work presented in this study aims to fill this gap by introducing
an approach to compare a patient's performance with that of a
reference, using the Medical Interactive Recovery Assistant
(MIRA) rehabilitation platform. We explore 2 different machine
learning techniques: dynamic time warping (DTW) and hidden
Markov model (HMM). They have been widely used for gesture
recognition to study acquired motion trajectories [9-14]. The
former belongs to model-less time domain methods, whereas
the latter is a model-based probabilistic technique for time-series
analysis. Comparing the patient’s trajectory with that of a
physiotherapist as a reference, each approach generates an
objective similarity score indicating how similar the performance
was.

Related Work

Rehabilitation Platforms
The concept of exergaming enables exercising when playing
games. For players, it is an opportunity to play games in a more
active and less passive manner. For patients, it offers the
opportunity to practice therapeutic tasks in a more playful and
less repetitive manner. Exergames offer various activities, such
as aerobic exercises and dancing; balance and stretching
workouts; and recreational simulations, such as golf, skiing,
and more. However, they require additional hardware and

software. In terms of hardware, they require proper sensory
equipment to track the user's motion. In terms of software, the
game scenario must accommodate whole body interaction. There
are various commercially available game consoles that enable
exergames, including Xbox (Microsoft), PlayStation (Sony),
and Wii (Nintendo). Each comes with its own dedicated input
device for enabling user interaction with the games, that is,
Kinect for Xbox, Move for PlayStation, and Remote Plus for
Wii.

Among them, Kinect has gained higher popularity owing to its
acceptable performance and versatility [15]. Microsoft
introduced Kinect in 2010 as a peripheral input device for its
gaming console Xbox and discontinued it in 2017. Kinect
enables interaction with virtual environments using gestures
rather than conventional controllers. The device includes an
RGB camera and a depth sensor, which combines full body
3-dimenonal (3D) motion capture capabilities and gesture
recognition. Using the Kinect SDK 2.0, the position of 25 human
skeleton joints can be accessed with a sample rate of 30 fps.
Since its launch, researchers have used the Kinect for various
applications, including rehabilitation [16-21]. Other similar
motion-sensing devices capable of tracking the 3D position of
the joints include Azure Kinect (Microsoft), Astra (Orbbec),
RealSense (Intel), Structure Sensor (Occipital), and BlasterX
Senz3D (Creative).

Kinerehab was introduced by Chang et al [16] to assist therapists
in rehabilitating students at a public school. By conducting a
user study with two patients, the authors compared two
experimental phases, baseline (without assistive technology)
and intervention (with Kinerehab), lifting both arms to the front,
to the side, and upward. The data showed a significant increase
in motivation (willingness to keep practicing) among participants
and hence improved exercise performance using Kinerehab
compared with performance in the presence of a therapist. A
Kinect-based serious game for physiotherapy (KSGphysio) was
proposed by Duarte et al [17] that had a mobile interface to
facilitate the analysis of patient progress by generating relevant
statistics. Cary et al [18] developed a web-based serious game
called Therasoup to improve the patient’s motivation when
performing exercises and to provide technical data to the
physiotherapist, which helped in the assessment. The game tries
to simulate daily life activities such as cooking, where the player
controls an avatar to pick the ingredients from shelves and put
them in a pan at the center. Su et al [19] developed a
Kinect-enabled home-based rehabilitation system (KEHR) to
assist patients in conducting safe and effective off-hospital
rehabilitation without the immediate supervision of a physician.
KEHR supported 3 different shoulder rehabilitation exercises:
shoulder abduction, shoulder anterior elevation, and shoulder
external and internal rotation. A serious game framework for
therapy (Theragame) providing options to imitate the actions
performed by an avatar or to play a game that trains specific
parts of the body was introduced by Ferreira et al [20]. A
web-based platform for physical telerehabilitation for patients
after hip replacement surgery was described by Rybarczyk et
al [21] with 2 goals in mind: making use of a low-cost motion
capture device (Kinect) and real-time automatic assessment of
performance. A comprehensive review of the technical and
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clinical impacts of the Kinect in physical therapy and
rehabilitation is given by Mousavi et al [15]. The survey covers
rehabilitation systems before and after Kinect as well as
platforms with and without clinical evaluation. Although
Kinect-based rehabilitation systems are accepted by both patients
and therapists, the lack of objective, clinically meaningful
evaluation of performance raises questions regarding their
effectiveness.

Commercially available rehabilitation platforms based on Kinect
and exergames include MIRA [1], VirtualRehab [2], and
REHABILITY [3]. All these platforms have the capacity to be
used at home to encourage and monitor performance or at a
hospital to assist and support physiotherapists. MIRA is a class
I medical device that uses games built based on best clinical
practice and expertise from specialist physiotherapists to keep
patients engaged and motivated throughout the therapy.
VirtualRehab, a Conformitè Europëenne–certified class I
medical device, is a product that can be used in clinics and
hospitals as well as in patients’ homes, allowing them to
continue their rehabilitation treatment. With REHABILITY,
patients can perform rehabilitation exercises at the clinic and
hospital or remotely, but with constant medical supervision.
None of these systems offers automatic, objective assessment
comparing patient performance with that of a reference. They
offer game scores such as number of hits and statistics such as
execution/completion time.

Performance Evaluation
Automatic performance evaluation of a user carrying out a task
has always been a challenge among researchers in both medical
and nonmedical domains. Such evaluations are usually
subjective and, in the real world, are performed by judges who
are experts in the given field. For example, evaluation of the
quality of a dance, a gymnastic performance, or a
physiotherapy/rehabilitation exercise may be performed by
expert dancers, sport athletes, and professional therapists,
respectively. Such evaluations require the presence of human
specialists who may not be easily accessible or affordable. In
addition, the fact that the assessment is subjective indicates that
a different expert might have a different opinion. The ability to
conduct objective automatic evaluations that are repeatable is
thus highly desirable. A real-world example is a video game
called Just Dance, which is developed by the French company
Ubisoft for Microsoft Xbox. Using the Kinect sensor, the players
must mimic the onscreen dancer's choreography to a chosen
song. The system then continuously evaluates in real time the
quality of a user's dance movements in terms of being “Ok,”
“Good,” “Super,” or “Perfect” and reports a total numeric score
at the end [22].

Studies in the literature concerned with automated evaluation
of therapy motions are scarce [23-26], and not much attention
has been paid to the development of metrics for performance
evaluation [27]. As a common scheme, a reference model is
first captured as the ground truth. Then, a user's performance
can be compared with the reference using machine learning
approaches. A comprehensive taxonomy of the metrics for
evaluation of patient performance in physical therapy was
proposed by Vakanski et al [27]. The metrics are classified into

quantitative and qualitative categories. Further, quantitative
metrics are divided into model less (based on raw measurements
of motions) and model based (based on a mathematical model
of the motions). Of the reviewed metrics, root mean square
distance, Kullback Leibler divergence, log likelihood, and
Fugl-Meyer assessment were used to classify a set of 5 human
motions captured with a Kinect sensor.

Using KEHR, Su et al [19] applied DTW and fuzzy logic to
detect real time subjective discrepancies between the model
exercise and the performance of the patient. Before applying
either algorithm, the user's execution of the prescribed exercise
was recorded under the supervision of a professional. Then, 2
factors were included for the assessment: (1) trajectory disparity,
the motional path created by each joint over time, and (2) speed
variation, the time used to complete a designated exercise.
Applying HMM and defining an accept/reject interval, a method
to detect deviations from normal repetitions in therapeutic
activities was presented by Palma et al [23]. The authors later
compared the performance of their HMM-based technique with
that of DTW [28]. A similar approach using HMMs to assess
the correctness of telerehabilitation exercises was employed by
Deters et al [24], whereas a cloud-based physical therapy
monitoring and guidance system that applies DTW to produce
subjective assessments in terms of being too slow/fast or
overdone/incomplete was proposed by Wei et al [25]. Richter
et al [26] presented an error classification algorithm for therapy
exercises based on incremental DTW to classify the incorrect
motions in a hip abduction exercise into 4 discrete categories:
bent knee, foot outside, upper body, and wrong plane. A
variance of DTW called multi-template, multi-match DTW was
used by Yurtman and Barshan [29] to detect and evaluate
physical therapy exercises using wearable motion sensors,
providing a quantitative measure of similarity between an
exercise execution and previously recorded templates. A
continuous time warping algorithm based on automatic motion
assessment learning was introduced by Tal and Shimshoni [30].
The resulting models produced numerical scores comparable
with those of the Fugl-Meyer assessment. Recently, a
DTW-based algorithm was developed for assessing
Kinect-enabled home-based rehabilitation exercises to support
auto coaching in a virtual gaming environment [31]. Using a
simple but innovative method, the DTW distances are converted
to meaningful performance scores in terms of percentage. By
conducting a user study, the scores are then validated with the
expert ratings showing a strong positive linear relationship. In
another recent work, a deep learning–based framework for the
assessment of rehabilitation exercises was proposed [32]. The
framework consists of algorithms for dimensionality reduction,
performance metrics (based on the Gaussian mixture model),
scoring functions, and deep learning models. The authors
demonstrated the capacity of the trained models by evaluating
a data set of 10 rehabilitation exercises.

Similar techniques have also been employed in other domains,
such as dance motion evaluation. Jang et al [33] employed DTW
and Laban movement analysis to evaluate the correctness of
dance movements in terms of being best, good, bad, and worst.
In another work [34], the authors employed HMM for dance
gesture recognition and evaluation, comparing the results with
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those of domain experts in terms of being good, medium, or
bad.

A common factor among all these efforts was that they focused
on evaluating the incorrectness of the performance on the basis
of subjective terms. In most cases, the method developed was
used to sort multiple erratic performances with respect to a
reference template. This approach motivated us to explore the
use of DTW and HMM to generate a similarity score between
a participant’s performance and a reference.

Methods

Materials

MIRA
MIRA is a software platform that turns physiotherapy exercises
into clinical exergames [35]. It aims to increase engagement
levels and improve the uptake of exercises by converting the
rehabilitation sessions into entertaining activities, making
therapy more convenient and easier to follow, and offering
greater accessibility. In turn, this has the potential for shorter
recovery times as well as supporting physiotherapists, reducing
workload, and waiting times at clinics. MIRA has been used in
several clinical studies [36-39].

The MIRA system includes a Kinect V2 sensor (Microsoft Corp)
connected to a computer running the MIRA program (Figure
1). Currently, 32 exercises and 25 games are supported by
MIRA. Each rehabilitation session requires selecting an exercise
and a suitable game (Figure 2). Exercises include shoulder
abduction, elbow flexion, and side strides, and examples of
games include Firefly, Fishing, and Football. Once an exercise
has been selected, adequate game options are presented. The
selected combination of exercise and game is then added to the
session and can subsequently be executed. Each execution starts
with a process of calibrating the patient’s position in front of
the Kinect. A short video tutorial explaining the exercise is
followed by another video tutorial describing the game
mechanics. As the game starts, the user must play it by moving
the intended body part (ie, left arm, right leg, or neck) in the
manner shown in the video.

At the end of each session, the MIRA system reports various
scores. Depending on the game, it reflects on the extent to which
the player follows the game's objectives. For example, the
number of fish caught and taken to the boat or the number of
times the spaceship is safely passed through the fire rings.
Although the scores can be an indication of how well the user
played the game, they do not have much value in a clinical
context. The aim of this work is to introduce an objective
evaluation method that is more meaningful and suitable for
clinical evaluation.

Figure 1. Medical Interactive Recovery Assistant system including a Kinect motion sensor and software to match an exercise with a game. A child
(left) and an elderly gentleman (right) playing the Atlantis game. The child is practicing an arm exercise, the gentleman a hip exercise.
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Figure 2. A snapshot of the Medical Interactive Recovery Assistant program. Exercises are listed on the left and games are shown on the right. Multiple
game options allow practicing the same exercise with different games, thus encouraging patients to cope with the prescribed exercise by discovering
the various game scenarios.

Data Collection
We developed a program in the Unity 3D game engine (Unity
Technologies) [40] to capture and store raw 3D position
coordinates of the selected joints using the Kinect. This was
needed as the MIRA program does not allow accessing joint
data when playing an exergame because of regulations imposed
on class I medical devices. There were no technical problems
executing both programs in parallel as the Kinect SDK permits
simultaneous access to the sensor from multiple sources. Using
Kinect V2, the 3D position coordinates of 25 different human
skeleton joints can be tracked with an update rate of 30 fps.
However, it is not necessary to track all the joints but only those
that are involved in the chosen exercise. For this study, 4
different types of exercises were selected in consultation with
a physiotherapist (DS): shoulder abduction (both left and right
arms), hip abduction (both left and right legs), lunge (both left
and right legs), and sit-to-stand exercises. This resulted in a
total of 7 exercises to be performed by participants. A brief
description of each exercise is given in Textbox 1.

As 3D position coordinates are dependent on the user size and
location in front of the Kinect camera, we decided to extract

invariant features (joint angles) to describe each exercise
optimally (Figure 3). These scalar features were discussed with
the physiotherapist and confirmed to be sufficient for capturing
the essence of each exercise. For example, in shoulder
abduction, the shoulder angle (θ1) reflects the range of motion
and the arm angle (θ2) indicates whether the arm is being
stretched or not. Except the lunge exercise, which required 3
joint angles, all other exercises could be described with only 2
angles. A sample plot of the extracted features is shown in
Figure 4.

A motion trajectory T(l) is formed by the sequence of feature
values within the time frame 0≤t≤l, where l is the execution
time. T(l) is a matrix of size l×3 for the lunge exercise and l×2
for rest.
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Textbox 1. Correct execution of each exercise.

• Shoulder abduction: the arm should be kept close to the body. The exercise consists of raising the arm away from the side, keeping it in a straight
line with the body.

• Hip abduction: the leg should be held straight and on the ground. The exercise involves raising the leg away from the side, keeping it in a straight
line with the body.

• Lunge: stand straight facing forward with the spine and the pelvis in a neutral position. Take a step forward with a leg that is long enough so that
when the knee bends, it does not go beyond the toes. Bend the back knee until it almost touches the floor, keeping both the torso and the spine
in a neutral position. Return to the starting position.

• Sit-to-stand: sit on a chair. Without using the hands for support, stand up and sit back down. Make sure each movement is slow and controlled.

Figure 3. Extracted features (joint angles) from the joint 3D positions for each type of exercise. Both 2D side view and 3D perspective view are provided
for clarity. 2D: 2-dimensional; 3D: 3-dimensional.
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Figure 4. Sample extracted features obtained from 3D position for all seven exercises: hip abduction left (hpl) and right (hpr), lunge left (lul) and right
(lur), shoulder abduction left (shl) and right (shr), and sit-to-stand (sit).

DTW
DTW [41] is a technique that aligns 2 time series and determines
the minimum Euclidean distance between them. It is a frequently
used approach in speech recognition to classify sound waves
of the same word spoken in different accents and durations.
DTW is sensitive to both the signal pattern and the amplitude.
If 2 signals have the same patterns, for example, the same

number of peaks but different amplitude, then the alignment
cannot be perfect, thus yielding a large distance between them.
If they have the same amplitude but different patterns, the
alignment will also result in a large distance. Therefore, the
output distance is a measure of the similarity between 2 time
series. The higher the distance, the greater the deviation.

Although DTW was initially applied to speech recognition, it
has also been widely used in gesture recognition [10,12,42]. In
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these studies, the motion trajectories, each representing a
gesture, are classified into the most similar gesture group (ie,
the one with the smallest distance) by converting the distance
between 2 trajectories into a similarity measure.

We define DRP=DTW(TR,TP) as a distance measure between
the reference (TR) and the participant (TP) trajectories. The
MATLAB function dtw was used for the implementation.
Although the lower limit (Dl) of this distance is 0 (being
perfectly similar), the upper limit is unknown and can take any
large value. By estimating an upper limit, it is possible to convert
the distance measure into a similarity score. By associating the
upper bound with the worst possible performance, an upper
limit can be approximated. For all the exercises, not moving
would be the worst performance. We refer to this worst
trajectory as TW. Calculating DRW=DTW(TR,TW) allows us to
establish the upper bound. Knowing both the lower and the
upper bounds, a given distance Dl=0≤D≤Du can be transformed
into a similarity measure or percentage score 0≤SD≤100:

SD=100×(D-Dl)/(Du-Dl)=100×(D/Du)

HMM
An HMM [43] is a stochastic model that considers an observed
signal as the result of the transition of a system between several

states, each of which has the probability that a particular symbol
might be observed. HMMs are useful for the recognition of
temporal patterns such as speech, handwriting, and gestures.
An HMM with discrete observations is mainly specified by the
state transition matrix A and the observation matrix B, assuming
that the system goes through N different possible states S1, S2,
..., SN and in each state, one of M different symbols v1, v2, ...,
vM can be observed (Figure 5).

For performance evaluation, a single HMM, λR, is trained based
on the reference motion trajectory TR. We then calculate the
log likelihood of TP given the trained model by
LRP=log(P(Tp|λR))/lp. Similar to DTW, the lower and upper
limits of the log likelihood need to be calculated. The upper
limit (Lu) is known and is equal to 0, as the highest probability
is 1. However, the lower limit is unknown and can be any small
value less than zero. Same as before, we assumed that this lower
limit reflects the worst possible performance captured by TW.
Letting the lower limit be LRW=log(P(Tw |λR))/lw, the similarity
score 0≤SH≤100 corresponding to log likelihood Ll≤L≤Lu=0 is
obtained by:

SH=100×(L-Ll)/(Lu-Ll)=100×(Ll-L/Ll

Figure 5. Hidden Markov model with three states (q1 to q3) and five observation symbols (v1 to v5). The relationship among states is described by
transition matrix A=[aij]3x3, and between states and discreet symbols by observation matrix B=[bij]3x5. It is assumed the system evolves through
certain states whose relationship is to be studied.

Experimentation

Setup
Standard hardware (computer, television, Kinect sensor) was
used in combination with a Unity program to display the
participant’s live performance on the screen and store the 3D
position data along with a time stamp. As mentioned above, 4
types of exercises were chosen to be performed by the
participants: shoulder abduction, hip abduction, lunge, and
sit-to-stand exercise. Except the sit-to-stand exercises, all other
exercises were performed for both the left and the right sides,
resulting in a total of 7 exercises.

Participants
A total of 16 healthy participants, including 8 adult females (22
to 30 years), 6 adult males (22 to 40 years), and 2 school boys
(12 and 17 years), were recruited for the study. Participants
were asked to stand in front of the Kinect sensor and perform
each of the 7 exercises for 20 seconds. They were told to repeat
the chosen exercise at least five times with a short pause between
each repetition. In addition to the 16 participants, the

physiotherapist involved in the project (DS) was asked to
perform the exercises as the reference performance. He repeated
each of the 7 exercises at least five times during a period of 20
seconds each.

Results

Of the 5 repetitions, 3 were extracted (ignoring the first and the
last) for each participant. For DTW scores, the distance between
each repetition of a participant and each repetition of the
physiotherapist was calculated, yielding a total of 9 values. The
final DTW score (SD) was obtained by taking the average of
these values. For HMM scores, the likelihood of each repetition
of a participant given the physiotherapist’s model was
calculated, yielding a total of 3 values. The final HMM score
(SH) was obtained by taking the average of these values. Figure
6 shows the similarity scores obtained by applying DTW (SD,
solid blue line) and HMM (SH, solid red line) for each exercise.
The difference between the 2 scores, SD−SH, is also indicated
in the plots by a dashed black line. Participant 17 is the
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physiotherapist and hence the reference. As expected, he
obtained the maximum score in all cases. The worst
performance, that is, making no movement, is included as
participant 18, yielding very low scores in all exercises. Ideally,
we would have expected to obtain a maximum score of 100%

for the reference and a minimum score of 0% for the worst
performance. However, these values were not obtained because
of natural variability among the repetitions and cross-comparison
between the repetitions.

Figure 6. Similarity scores obtained from applying dynamic time warping (SD, solid blue line) and hidden Markov model (SH, solid red line). Their
difference, SH-SD, is shown by the black dashed line. Participant 17 is the physiotherapist and 18 is the worst performance, that is, making no movement.
Error bars indicate standard error.
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Discussion

Several observations can be made from these plots in Figure 6.
Both scores showed similar trends. Whenever a participant did
not perform well according to the DTW score (SD), his/her
HMM score (SH) was low as well. Examples of this behavior
are participant 6 in hip abduction (left and right) and participant
9 in sit-to-stand.

Regarding the difference, SH−SD, it is difficult to observe any
obvious pattern. On some occasions, the difference was positive
and on some others it was negative. There were also cases where
the difference was negligible. The difference could be as large
as +18% (participant 2, lunge—left) or as small as −24%
(participant 6, hip abduction—right). For the reference
participant 17, the difference was generally very low (−1%,
−1%, 4%, 1%, 2%, 1%, and 0%). However, this was not the
case for the worst performance, participant 18. In most exercises,
the difference was negative and was not negligible, indicating
that the SD was usually larger than the SH for the worst
performance. In addition, in most plots, SH was closer to 0%
than SD for the worst performance.

Among the exercises, shoulder abduction was less challenging
and easy to perform, which is reflected by participants
performing well and achieving high similarity scores. In
contrast, lunge was the most difficult and demanding exercise
to perform, which is also reflected in the obtained similarity
values.

Time domain plots of the best and worst performances can be
used to visually examine the correlation between the trajectories
and the calculated scores. For each of the 7 exercises, the
trajectories of the best and the worst performances were plotted
against the reference (Figure 7). Each plot illustrates 3
repetitions of the chosen participant (solid red lines) and 3
repetitions of the physiotherapist (dashed blue lines). It should

be noted that for hip/shoulder abduction and sit-to-stand, each
repetition includes 2 features, and for lunge, each repetition
includes 3 features (Figure 4). Evidently, whenever the
participant’s trajectories match those of the reference (in terms
of both amplitude and duration), the obtained score is high.
Conversely, when the patterns do not match, the score is low.
For example, in hip abduction—left, participant 6 failed to
achieve full range of motion (compare the peak amplitude, 40°
versus 80°) and performed faster (compare the duration, 100 [1
second] versus 200 [2 seconds]). It is worth mentioning that
both the DTW and the HMM algorithms are sensitive to
amplitude than duration. They are both time-series algorithms
that take into account the sequence of data (amplitudes)
regardless of their frequency (duration). DTW does not allow
time scaling of members within the sequence, and the HMM
algorithm discards the time dependency of members by grouping
them into clusters during the quantization preprocess. If two
participants followed the required range of motion, but one
performed slower (or faster) than the other, their score would
be the same (see lunge—left, both participants 11 and 9).

Except the lunge exercise for which 3 features (joint angles)
were extracted, 2 features were obtained for all the other
exercises. However, not all the extracted features had the same
weight and importance. For instance, in hip abduction, referring
to Figures 4 and 7, θ2 (hip angle) is the more relevant feature
and θ1 (torso angle) had lesser importance. This is contrary to
the results for shoulder abduction and sit-to-stand. For lunge,
θ2 and θ1 were both equally important, but θ3 was lower. The
main feature has a higher influence on the obtained similarity
score. This is shown in Figure 8 for hip abduction—left as an
example. Generally, the same trend was maintained for each
measure (compare the same color solid and dashed lines).
However, the effect of removing a minor feature θ(1) was less
influential on SH than on SD, as DTW is more sensitive to detail
than HMM.
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Figure 7. Time-domain plots of the best and worst trajectories (excluding participants 17 and 18). X-axis indicates the time in seconds and Y-axis
indicates the joint angle in degree. The three repetitions of the reference trajectories are given in dashed blue lines and the chosen participant’s trajectories
in solid red lines. All plots include two features, except for lunge where three features are presented.
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Figure 8. The effect on the scores of removing minor features.

Although single-feature SD is clearly larger than full-feature
SD, single-feature SH is almost the same as full-feature SH.
Adding more details, that is, presenting additional minor
features, increases the distance values (and hence decreases the
similarity scores) obtained by applying DTW.

Although DTW is more sensitive to detail, HMM is more
sensitive to the way the feature space is quantized. Quantization
is a preprocess applied over the extracted features to segment
them into several clusters for the purpose of training a discrete
HMM. The boundaries and the number of clusters have an
obvious effect on the HMM scores. This can be seen in Figure
9 for shoulder abduction—right as an example. Bivariate
histogram plots are used to visualize the clusters. Three cases
were tested, changing θ1 (main feature) boundaries and keeping
θ2 (minor feature) intact. θ1 is divided into 3 clusters (90°, 180°,

and 270°) in case A, 4 clusters (90°, 150°, 210°, and 270°) in
case B, and 5 clusters (90°, 135°, 180°, 225°, and 270°) in case
C. In all cases, θ2 is divided into 4 clusters (90°, 150°, 210°,
and 270°). A closer look reveals that the SH scores in case B
are clearly lower than those in cases A and C, which are more
similar. The reason for this is that feature points are grouped
into different clusters for the participant and the reference. This
affects (reduces) the probability that a selected feature point of
the participant is generated by the reference model. Most likely,
the feature points of the participants and the reference in cases
A and C are grouped into similar clusters; hence, their similarity
scores are higher and more similar. In case B, however, they
are grouped into different clusters, decreasing the probability
values, thus lowering the similarity scores. One can take
advantage of this behavior by adjusting the sensitivity of HMM
similarity scores to smoothen or sharpen the differences.
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Figure 9. The effect of quantization on the calculated hidden Markov model scores.

Worst performance is a key factor affecting the scores in both
measures as it corresponds to the upper or lower boundary, as
previously explained. This is evident from
SD=100×(D-Dl)/(Du-Dl)=100×(D/Du) and SH=100×(L-Ll)/
(Lu-Ll)=100×(Ll-L/Ll). Both unknown limits (Du for DTW and
Ll for HMM) are used as denominators to normalize the distance
SD=100×(D-Dl)/(Du-Dl)=100×(D/Du) and likelihood SH=
100×(L-Ll)/(Lu-Ll)=100×(Ll-L/Ll) values. The larger the
denominator, the smaller the deviations (fluctuations) in the
scores. This value can also be intentionally altered to adjust the
sensitivity of the scores. With a larger denominator, the scores
are smoother and the differences between participants become
smaller. With a smaller denominator, the scores become sharper

and the differences between participants are highlighted. As
explained previously, we chose no movement as the worst
performance for all exercises. Seemingly, a different worst
performance can yield different scores if it generates different
denominators. For example, one might say that closing the
elbow in shoulder abduction could be worse than keeping it
stretched (the current situation). An example of altering limits
(multiplying and dividing Du and Ll by 2) for sit-to-stand is
shown in Figure 10. When the limits are magnified (multiplied
by 2), the scores are increased and smoothed (Figure 10, left).
When the limits are shrunk (divided by 2), the scores are
decreased and sharpened (Figure 10, right). Smoothed scores
can be used to encourage patients performing prescribed
exercises in the early stages, whereas sharpened scores could
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be used in later stages to encourage further mastering of the
skills involved in performing the exercises.

Several comparative tests were also conducted. Figure 11 shows
the average scores across all 7 exercises. For each participant,
the average score was obtained from 9×7=72 scores (9 values
for each of the 7 exercises). As can be seen, the 2 plots show
very similar trends. This was verified by applying the t test over
the 2 measures (P=.49). Small error bars indicate high levels
of consistency.

A comparison between the left and right performances,
excluding sit-to-stand, is shown in Figure 12. No significant
differences were observed between the left and the right scores.
This was verified by applying a t test over the scores for each
measure (P values are given in Table 1).

Furthermore, a comparison between female and male
participants is shown in Multimedia Appendix 1. The scores
were averaged across 8 female and 8 male participants
(excluding reference). As it can be seen, there was no significant
difference between the 2 genders. This was verified by applying
a t test over SD (P=.22) and SH (P=.86).

Figure 10. Effect of altering limits (Du and Ll, obtained from the worst performance) on the scores: multiplied by 2 (left) and divided by 2 (right).
Error bars indicate standard error.

Figure 11. The combined and averaged scores (left: SD and right: SH) for all seven exercises. Error bars indicate the standard error.
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Figure 12. Comparison between left and right scores. Error bars indicate standard error.

Table 1. P values obtained by applying the t test over the left and right scores.

ExercisesMetrices

Shoulder abductionLungeHip abduction

.44.09.27SD
a

.45.25.85SH
b

aSD: dynamic time warping score.
bSH: hidden Markov model score.

Conclusions and Future Remarks
We implemented and compared 2 commonly used machine
learning algorithms, DTW and HMM, to objectively evaluate
the performance of patients using a rehabilitation exergaming
platform. 3D movement data were obtained using the Kinect
depth camera, and invariant features (joint angles) describing
each exercise were extracted. The extracted features are
independent of body fit, size, and position and distance of the
user to the Kinect. They are also independent of the hardware
being used and can be adapted for any motion-sensing device
capable of tracking human skeleton joints, such as those
mentioned in the Related Work section.

Setting a physiotherapist performance as the reference and
making no movement as the worst performance, we applied
both DTW and HMM algorithms to compare participants’
performance and report a similarity score. The idea of worst
performance was the key to converting the distance measures
(obtained from DTW) and likelihood values (obtained from
HMM) to similarity scores between 0% and 100%. Overall,

both algorithms showed similar trends but had different
sensitivities. DTW was observed to be more sensitive to small
changes, whereas HMM was more sensitive to the boundaries
and clusters resulting from the quantization process. Both DTW
and HMM are inherently more sensitive to range of motion than
duration. In addition, both measures are sensitive to the worst
performance. This suggests ways to use both algorithms to
monitor patient progress at different stages: monitoring could
start with HMM similarity scores in early stages for a more
general comparison and switching to DTW similarity scores in
later stages for finer comparison.

The application of these similarity scores is twofold. The scores
can be used by the patients at home to encourage them to
continue practicing the exergames to achieve higher similarity
scores. In addition, the scores can be reported back to the
physiotherapist to monitor patient progress and provide
feedback. The exercise program can also be adjusted by the
physiotherapist given the level of progress to better fit the
patient’s needs and progression.
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Our proposed method has the potential for significant impact
in the context of rehabilitation exergames by enabling remote
therapy home-based sessions where performance can still be
adequately monitored. This can help better assess the quality
of physical exercises performed by patients, fine-tune
rehabilitation programs, and enhance the efficiency of
home-based rehabilitation. In turn, cost reductions and freeing
up of physiotherapy unit time may also be achieved.

Future work will include testing our proposed system on a public
data set such as the University of Texas at Dallas-Multimodal
Human Action Dataset [44]. In addition, we intend to recruit
patients with reduced movement range or other constraints to
participate in a study to validate our proposed performance
metrics in a clinical setting. The study will also investigate the
correlation between the objective scores used by our system
and the subjective notes taken by physiotherapists when
observing patients performing the exergames.
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