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Abstract

Background: Transfers are an important skill for many wheelchair users (WU). However, they have also been related to the
risk of falling or developing upper limb injuries. Transfer abilities are usually evaluated in clinical settings or biomechanics
laboratories, and these methods of assessment are poorly suited to evaluation in real and unconstrained world settings where
transfers take place.

Objective: The objective of this paper is to test the feasibility of a system based on a wearable low-cost sensor to monitor
transfer skills in real-world settings.

Methods: We collected data from 9 WU wearing triaxial accelerometer on their chest while performing transfers to and from
car seats and home furniture. We then extracted significant features from accelerometer data based on biomechanical considerations
and previous relevant literature and used machine learning algorithms to evaluate the performance of wheelchair transfers and
detect their occurrence from a continuous time series of data.

Results: Results show a good predictive accuracy of support vector machine classifiers when determining the use of head-hip
relationship (75.9%) and smoothness of landing (79.6%) when the starting and ending of the transfer are known. Automatic
transfer detection reaches performances that are similar to state of the art in this context (multinomial logistic regression accuracy
87.8%). However, we achieve these results using only a single sensor and collecting data in a more ecological manner.

Conclusions: The use of a single chest-placed accelerometer shows good predictive accuracy for algorithms applied independently
to both transfer evaluation and monitoring. This points to the opportunity for designing ubiquitous-technology based personalized
skill development interventions for WU. However, monitoring transfers still require the use of external inputs or extra sensors
to identify the start and end of the transfer, which is needed to perform an accurate evaluation.

(JMIR Rehabil Assist Technol 2018;5(2):e11748) doi: 10.2196/11748
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Introduction

Globally, there are over 70 million wheelchair users (WU), and
there is a growing need for wheelchairs to fill the mobility gap
for people who are unable, or struggle, to walk [1]. This is a
trend we can expect to continue as the population ages, and

more people live longer with conditions that affect their ability
to walk. Wheelchairs can be manual, electric or have “power
assist,” which gives additional power with each push. Regardless
of the type of wheelchair being used, the user needs to get into
and out of the wheelchair. This process is called transferring.
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Transfers are necessary for many daily activities and happen
on average between 14 and 18 times a day [2,3]. Transfers occur
between the wheelchair and other surfaces, and they are affected
by a variety of factors such as height and stability of the surfaces
and space available around them. Depending on the environment
and the characteristics of the person, each transfer will have its
challenges [4,5].

Learning how to transfer correctly is a critical skill for WU. In
order to maintain this independence WU must preserve the
functioning in their upper limbs. However, due to the
exceptionally high loads, and the repetitive nature of wheelchair
transfers, WU frequently suffer from pain in the shoulders and
wrists [6]. This pain is caused by musculoskeletal injuries, which
can prevent people from using their wheelchair independently.

Wheelchair skills training helps to prevent such injuries by
teaching WU correct techniques for everyday activities such as
pushing over a variety of surfaces and transferring onto and
from many surfaces. Clinicians mostly deliver wheelchair skills
training [7] within rehabilitation clinics, but it can also be
provided through charities that offer peer-to-peer training, or
even remotely via online courses [8]. Regardless of how the
training is provided, patients still need to rely on clinicians to
evaluate their transfers, and this evaluation generally takes place
in the clinic.

Indeed, there is no routine way for wheelchair transfers to be
monitored remotely in everyday life settings. Furthermore, the
provision of wheelchair skills training is not universal and can
depend on geography (eg, more prevalent in more affluent
countries), medical diagnosis (eg, spinal injury rehabilitation
programs generally integrate wheelchair skills training whereas,
for other conditions such as stroke, rehabilitation units might
not), and funding [9]. The Web-based e-learning platform
piloted by Worobey et al [8] shows the potential to improve the
availability of transfer training through massive open online
courses, but would benefit from a method for
home/self-monitoring for WU that would ensure they did not
need to depend on a clinician.

Wearable technologies offer the opportunity to provide
monitoring and feedback to WU during their daily lives,
particularly on activities and techniques which are known to
cause injury. Research in this area has focused on automatically
detecting different types of activities from one another (eg,
resting, pushing the wheelchair, performing household activities)
[10,11]. Most authors have focused on the use of a wrist-worn
sensor for activity monitoring [12-14]. A few have linked energy
expenditure to accelerometer data [14,15], and 1 has investigated
the quality of pushes, identifying a good style of pushing from
a poor one [12]. Very little attention has been dedicated to
transfers.

There has only been 1 study which has evaluated the accuracy
of classification algorithms for detecting the occurrence of
wheelchair transfers, alongside other activities [11]. The
researchers used 4 accelerometers located at the wrists, chest,
and waist [11]. The experiment was highly successful, and
transfer recognition reached 100% accuracy for both quadratic
discriminant analysis (QDA) and support vector machine
(SVM). However, the study consisted of a highly controlled

experimental set-up and involved the performance of
consecutive transfers for a set period, reducing movement
differences between repetitions of the same activity. Also, the
transfers were only executed between 2 surfaces of the same
height (2 wheelchairs) rather than between different types of
surfaces and different environmental real-life contexts.
Therefore, it is not clear if the results generalize to real-life
settings. Finally, despite the use of 4 sensors, only in-depth
analysis of the contribution of the wrist-worn sensors is reported
and it is not clear to what extent the other sensors contribute to
the recognition. This is particularly critical given that trunk-worn
sensors are, for example, useful for evaluating aspects of transfer
quality [16] and WU do not always appreciate wrist-worn
sensors as they can interfere with the wheel during pushing [17].

The primary aim of this study was to develop a strategy to
enable the use of a single low-cost wearable sensor to evaluate
the quality of wheelchair transfers across 3 common transfer
scenarios. Body-worn sensors are often used to detect movement
(ie, recognition). However, they are rarely used to evaluate the
quality of body movement [18]. This is especially true for
rehabilitation purposes, as the system needs to be able to capture
clinical expertise in evaluating the movement. The secondary
aim was to adapt current methods for the detection of wheelchair
transfer occurrences through the same sensor in more ecologic
settings with the long-term aims of continuously monitoring
transfer skills.

Methods

Recruitment
The study was approved by the Internal Review Board at the
Georgia Institute of Technology, United States. Calls for
participants were made via a laboratory database, recruitment
flyers, social media, and relevant online forums. Interested
subjects were screened against the following criteria: (1)
between 18-65 years of age, (2) use of a wheelchair as primary
means of mobility for at least six months, and (3) ability to
perform wheelchair transfers independently. Participants were
excluded if they (1) were able to fully stand up when
transferring, (2) reported the use of a transfer board when
transferring, (3) were currently admitted to a hospital or a
rehabilitation facility, and (4) reported having upper extremity
pain or any medical condition that was likely to be exacerbated
through the study protocol (eg, angina, exercise-induced asthma,
uncontrolled hypertension).

Equipment
In this study, we consider the use of 1 accelerometer placed on
the chest of the user to measure g-force acceleration. The
accelerometer was secured to the upper third of the sternum of
the participants using double-sided tape. The chest was chosen
as it is the part of the body which dictates a good transfer (eg,
turning the trunk to align a good head-hip relationship) and is
helpful in detecting the start (eg, forward lean of the trunk) and
end points of the transfer (eg, controlled descent). Also, the
trunk is in motion throughout the wheelchair transfer cycle,
whereas the arms are often stationary during key moments in
the transfer [19,20]. Finally, the upper third of the sternum was
chosen as the location as it guarantees good stability
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measurements [21]. The use of a single accelerometer was
preferred to a multi-sensor system, as future applications for
long term-monitoring will need to be as unobtrusive as possible
in order to maximize the ease of use.

Trunk accelerations were recorded using a single wireless 3-axis
accelerometer (range ±16g, resolution 16-bit, Gulf Coast Data
Concepts, MS) sampling at 25Hz. The directions of the
acceleration (see Figure 1) were measured in respect to the
individual body axes (+ up – down; Y + left – right; Z + front

– back). The accelerometer data were filtered using an 8th order
low pass Butterworth filter with a cut off frequency of 10Hz to
reduce noise. Two video cameras were used to record
participants’ transfers, to label the recorded data for transferring
quality performance and to determine exact seat-off (start) and
landing time (end). Data processing was carried out on
MATLAB R2015b, and the accuracy of various classifiers was
calculated using WEKA 3.8 data mining suite.

Data Collection
For the data collection, a series of ecologically valid scenarios
(see Figure 2) was used consisting of 3 common daily transfers:
wheelchair-bed, wheelchair-toilet, and wheelchair-car. The first
2 represent necessary daily activities while car transfers are the
most crucial skill for personal independence and social/working
life [22]. The wheelchair-bed scenario was recreated in the
research facility, and a real accessible bathroom in the building
was used for the wheelchair-toilet scenario. The participant’s
vehicle was used for the wheelchair-car scenario, as all
participants reported ownership of a car.

Participants were asked to perform 2 return transfers (ie, to and
from the wheelchair) for each scenario using their own
wheelchair. Participants were asked to complete the transfers
as they normally would in their everyday lives. The order of
the 3 scenarios was randomized across participants. Also,
between each transfer, the person was asked to move around
the room to ensure variability between transfer executions.
Participants were asked to rest for a minimum of one minute
after each transfer. Additional resting time was granted to
participants who requested it in order to avoid fatigue.

Accelerometer data were collected continuously for the duration
of the experiment while the participant rested and moved
between different scenarios. Each participant performed 12
transfers for an average of a forty-minute recording for each
participant.

Data Analysis
Descriptive statistics, were determined for demographic data
of participants.

Automatic Transfer Quality Evaluation
Following the method proposed by Hwang et al [23], the transfer
assessment instrument (TAI) was reviewed to identify specific
items that could be evaluated using an accelerometer. Only 3
of the 15 items listed in Part 1 of the TAI were considered (see
Textbox 1). Part 2 of the TAI was excluded as the evaluator is
asked to complete a series of Likert scales based on the overall
evaluation of repeated transfers rather than the use of individual
skills within a single transfer.

Figure 1. The orientation of the accelerometer’s axes relative to the body during wheelchair transfers and its position on the participant’s sternum.

Figure 2. Bed, car, and toilet transfer scenarios.
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Textbox 1. Selected transfer assessment instrument items for the evaluation of transfers using a chest-placed accelerometer.

Head-hip relationship (item 12)

• Subject moves the head in the opposite direction of the hips to make the transfer easier to perform

Controlled flight (item 11)

• Transfer is smooth and uses coordinated movements

• Person appears to be safe and able to complete the skill in a controlled manner

Smooth landing (item 14)

• The landing phase of the transfer is smooth and well controlled

• For example, hands are not flying off the support surface, and the subject is sitting safely on the target surface

Other evaluation items were excluded as they referred to the
positioning of the wheelchair rather than the use of specific
transferring skills (items 1, 2, 3, 4, 5), evaluated static body
positioning rather than movement (items 6, 8, 9, 10, 13), or
were only applicable to transfers performed with the assistance
of a caregiver (item 15). Finally, item 7 was omitted as its
clinical implications were unclear [24].

In keeping with the guidelines of the TAI 3.0, 2 trained
physiotherapists, with at least four years of clinical experience
and who were familiar with the use of the TAI, evaluated each
transfer identified in the video by assigning a dichotomous score
(ie, good or not good) for each item. Each physiotherapist
evaluated the transfers independently, and any disagreements
over different scores were resolved through consensus meetings.

In order to segment the transfer data from the full accelerometer
recording sequence, accurate timestamps for start of lift (when

the buttocks of the subject lose contact with the initial surface)
and landing (when the buttocks of the subject contact the target
surface) were obtained from the annotated videos. The
accelerometer data were then partitioned in three time windows
as shown by Nawoczenski et al [25]: head-hip relationship
phase, flight phase, and landing phase. Time windows were
defined within a reasonable interval from the marked start and
end of the transfer to accommodate for potential imprecisions
due to human error when detecting start and end of the transfer.
Each window corresponded to a time epoch where the selected
TAI items could be evaluated (see Textbox 2, Figure 3, and
Multimedia Appendix 1).

Features for head-hip relationship and landing phases were
selected based on the biomechanics characteristics of wheelchair
transfers and confirmed by visual inspection of the data. The
rationale for the feature selection of each transfer aspect
evaluated is described in the following 3 sections.

Textbox 2. Time epochs for automatic transfer quality evaluation.

Head-hip relationship phase

• ±0.75s interval around the marked start lift timestamp

Flight phase

• ±0.5s interval around the marked timestamps for start lift and landing

Landing phase

• ±0.75s interval around the marked landing timestamp
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Figure 3. Trunk accelerations in the vertical (X), lateral (Y) and frontal (Z) direction observed during a wheelchair transfer. Vertical dotted lines mark
the timestamps identified for start lift and landing used to determine time windows.

Head-Hip Relationship
The performance of a transfer using a correct head-hip
relationship requires the subject to perform a quick forward lean
which causes a sharp decrease in the frontal acceleration
(segment B: minimum frontal acceleration, minimum frontal
jerk). A sudden trunk flexion is usually more effective in
relieving weight from the buttocks (maximum total jerk). To
gather more momentum, some people may move the trunk
slightly backward before bending forward, leading to a greater
range of frontal acceleration (segment A-B: range frontal
acceleration). The direction along which the trunk moves can
be represented by a line connecting the trunk with a point
slightly ahead of the tip of the person’s feet. An approximation
of the acceleration in that direction can be obtained from the
sum of the acceleration values in the vertical direction and the
inverse of the acceleration values in the frontal direction
(segments A-B and C-D: maximum frontal-downward
acceleration, range frontal-downward acceleration).

Controlled Flight
A controlled flight can be described as a smooth transition from
starting to target surface, as the body follows a linear path
without unexpected deviations. We, therefore, selected
representative features according to preexisting literature
focusing on measuring smoothness of movements during

rehabilitation [26,27] (spectral length of acceleration, spectral
length of velocity, dimensionless jerk, log dimensionless jerk).

Smooth Landing
The moment in which the subject’s buttocks land on the target
surface is characterized by a sharp peak of acceleration in the
vertical direction (segment E) combined with a smaller peak in
the lateral direction (segment F: maximum vertical acceleration,
maximum total acceleration). This would likely be reflected in
higher average values of acceleration in the observed window
of time (mean total acceleration, mean vertical acceleration,
root mean square total acceleration). Hard landings will also
likely cause large variations in the trunk accelerations, as the
trunk moves to regain stability (range total acceleration).

Feature Selection and Modeling
The correlation-based feature subset selection method explained
in Hall and Smith [28] was used to optimize the feature selection
process (see Textbox 3). Only selected features were used to
build the automatic transfer evaluation system. Random forest,
SVM, Naïve Bayes, multinomial logistic regression (MLR)
were used to build the classifiers as they are commonly used in
the related literature. A leave-one-subject-out cross-validation
method was used to calculate the accuracy of the models and
test for generalization over unseen users.
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Textbox 3. List of selected features calculated for automatic transfer quality evaluation.

Head-hip relationship features

• Minimum frontal acceleration

• Range frontal acceleration

• Maximum frontal-downward acceleration

• Minimum frontal jerk

Smooth landing features

• Maximum total acceleration

• Range total acceleration

• Mean total acceleration

• Root mean square total acceleration

Automatic Transfer Detection
Accelerometer data were divided into windows of 25 samples
(1s at 25Hz) with a 50% overlap between neighboring windows.
All windows were labeled for transfer occurrence according to
the timestamps extracted from the videos. From each window,
59 features were extracted according to the procedure illustrated
by Garcia-Masso et al [11]. Fourteen features were extracted
for each accelerometer axis and the total acceleration vector

including (1) SD, (2) variance, (3) 10th, 25th, 50th, 75th, and 90th

percentiles, (4) interquartile range, (5) range between the 10th

and the 90th percentiles, and (6) lag-one correlation of the counts
in a period of 10 seconds as a measure of temporal dynamics
[11,29]. Additionally, we used a two-level wavelet transform,
with Daubechies 2 as mother wavelet [11,30] to calculate the
Euclidean norm of the detail coefficients of the first and second
level of resolution and the approximation coefficient of the

second level. Finally, we calculated sample entropy for each
axis (tolerance 0.3 standard deviations, pattern length 2) as
shown in [11,31] and the cross-correlation between the 3 axes.

Although wheelchair transfers were only 1 of the activities
classified by Garcia-Masso et al [11] the features used were
found to be very informative to discriminate between discrete
types of activities undertaken by WU. Even though these
activities were quite different from each other, the use of the
same features would allow for the integration of transfer
detection within a more general activity detection framework
for the WU.

As for the automatic transfer quality evaluation, the
correlation-based feature subset selection method described by
Hall and Smith [28] identified 25 relevant features across all
participants that were used in the classifiers’ list of attributes
(see Textbox 4).

Textbox 4. List of selected features for the automatic transfer detection.

Time domain features

• Variance (Z, Total)

• SD (Total)

• 10th Percentile (Y, Z, Total)

• 25th Percentile (Z)

• 50th Percentile (Total)

• 75th Percentile (Total)

• 90th Percentile (Z, Total)

• Interquartile Range (X, Y, Z)

• Range between 10th and 90th percentiles (Y, Z, Total)

• Lag-one correlation (Z, Total)

Wavelet transform features

• Euclidean norm 1st level coefficient (Y)

• Euclidean norm 2nd level coefficient (Y, Z, Total)

• Approximation coefficient of the 2nd level (Z, Total)
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Table 1. Number of instances labeled according the occurrence and nonoccurrence of transfers for each participant.

TotalbNo transfer (relative %)Transfer (relative %)aAge (years)Participant gender

46654520 (96.9%)145 (3.1%)26Male

50374937 (98.0%)100 (2.0%)26Male

73167211 (98.6%)105 (1.4%)47Male

41134005 (97.4%)108 (2.6%)25Male

53285219 (97.9%)109 (2.1%)30Male

43814273 (97.5%)108 (2.5%)35Male

58885787 (98.3%)101 (1.7%)35Male

52215104 (97.8%)117 (2.2%)46Male

91159022 (99.0%)93 (1.0%)58Female

aRefers to the ratio between instances of transfer occurrence and the instances of no transfer occurrence.
bRefers to the total number of instances for each participant extracted from the accelerometer data.

Only selected features were used to build the automatic transfer
detection system. Classification algorithms used for transfer
monitoring were the same as the one used for automatic transfer
quality evaluation. A leave-one-subject-out cross-validation
strategy was to evaluate the performance and generalization of
the models. Having the participant wear the accelerometer for
the whole duration of the experiment minimized the disruption
and resulted in the collection of a more realistic dataset.
Accelerometer data were recorded continuously for
approximately forty minutes for each participant. However,
only 12 transfers lasting for a couple of seconds each were
performed within the time frame. This resulted in a severe
imbalance (See Table 1) between the transfer instances
(986/51064, 1.9%) and no transfer instances (50078/51064,
98.1%). To reduce classifiers bias towards the majority class,
random sampling with a 1:1 transfer/no transfer ratio was used
for all participants.

Results

Participants
Nine manual WU (8 males, 1 female) were recruited for the
study. Their mean age was 36.4 years (SD 11.5), mean height
was 181.5 cm (SD 13.5), and mean weight was 88.4 kg (SD
17.6). All participants were successfully able to complete the
12 transfers and no missing data were found in the dataset (see
Table 2).

Evaluation of Transfer Quality
After the physiotherapists’ evaluations, the dataset contained
the following ratio of good/bad transfer instances for each
evaluation item: (1) 59/49 for head-hip relationship, (2) 106/2

for controlled flight, and (3) 61/47 for smooth landing. Due to
the unbalanced nature of the dataset for the controlled flight
item, the automatic evaluation was not performed.

For both evaluation items, all classifiers exhibited similar
average accuracies across all participants. For the evaluation of
the head-hip relationship item average classifier accuracies
across all participants were: (1) 75.9% (SD 13.5%) for SVM,
(2) 72.2% (SD 15.6%) for random forest, (3) 75% (SD 13.8%)
for Naïve Bayes, and (4) 75.9% (SD 14.1%) for MLR. For the
evaluation of the smooth landing item average classifiers
accuracies across all participants were: (1) 79.6% (SD 7.4%)
for SVM, (2) 73.1% (SD 13.7%) for random forest, (3) 78.7%
(SD 7.3%) for Naïve Bayes, and (4) 78.7% (SD 7.3%) for MLR.
SVM was found to be the most accurate classifiers across all
participants for the evaluation of both head-hip relationship use
and smoothness of landing.

Accuracy and F1 scores displayed substantial variations across
individual participants (see Table 3) while SVM classifiers
achieved a balanced relative accuracy for both evaluation items
(see Table 4).

Assessment of Automatic Transfer Detection
Average classifiers accuracies for automatic transfer detection
were: (1) 86.8% (SD 10.1%) for SVM, (2) 83.2% (SD 10.1%)
for random forest, (3) 91.9% (SD 4.9%) for Naïve Bayes, and
(4) 87.8% (SD4.9%) for MLR. Overall, Naïve Bayes classifiers
obtained higher classification accuracies. Naïve Bayes classifiers
displayed a considerably higher relative accuracy for no transfer
occurrence instances. On the other hand, MLR classifiers
achieved a more balanced relative accuracy between the 2
classes (Table 5 and Figure 4).
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Table 2. Overview of participants’ characteristics.

Wheelchair use (years)Medical conditionAge (years)Participant gender

2.1SCIa C6b26Male

0.8SCI C726Male

8.5SCI T4c47Male

2.8SCI T525Male

12.0SCI C630Male

3.3SCI T1235Male

7.8SCI T135Male

10.9SCI T546Male

9.5TMd58Female

aSCI: spinal cord injury.
bC(n): Cervical spinal cord level of injury.
cT(n): Thoracic spinal cord level of injury.
dTM: transverse myelitis.

Table 3. Accuracy and weighted average score of support vector machine classifiers for the evaluation of head-hip relationship and smooth landing
items.

F1 scoreSVM accuracy (smooth landing)F1b scoreSVMa accuracy (head-hip relationship)Age (years)Participant gender

.73975.0%.66766.7%26Male

.83883.3%1.00100.0%26Male

.82983.3%.68666.7%47Male

.75575.0%.92391.7%25Male

.73975.0%.75075.0%30Male

.66766.7%.66366.7%35Male

.82983.3%.84483.3%35Male

.83383.3%.76775.0%46Male

.91791.7%.56958.3%58Female

aSVM: support vector machine.
bF1: weighted average.

Table 4. Support vector machine global confusion matrices showing actual versus predicted classes (and relative percentages) for the evaluation of
head-hip relationship use, and smoothness of landing for all wheelchair transfers.

Predicted classActual class

No SLSLbNo HHHHa

——18 (36.7%)31 (63.3%)HH

——51 (86.4%)8 (13.6%)No HH

11 (23.4%)36 (76.6%)——SL

50 (82.0%)11 (18.0%)——No SL

aHH: head-hip relationship.
bSL: smooth landing.
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Table 5. Global confusion matrices for automatic transfer detection using Naïve Bayes and multinomial logistic regression classifiers.

Predicted classActual class

MLRaNaïve Bayes classifiers

No TOTONo TOTObNaïve Bayes classifiers

——3558 (7.2%)46160 (92.8%)TO

——754 (72.5%)286 (27.5%)No TO

MLR

5425 (10.9%)44293 (89.1%)——TO

881 (84.7%)105 (15.3%)——No TO

aMLR: multinomial logistic regression.
bTO: transfer occurrence.

Figure 4. Classifiers accuracy for automatic transfer detection across all participants.

Discussion

Principal Findings
To our knowledge, this is the first paper that has attempted to
use a body-worn accelerometer to both monitor the occurrence
of wheelchair transfers and evaluate their quality. Using a single
body-worn accelerometer located at the chest, we were able to
evaluate 2 important elements of wheelchair transfers technique:
head-hip relationship use, and smoothness of landing with a
respective accuracy of 75.9% and 79.9 %. These results are
comparable to previous studies within the WU population, such
as research which classifies wheelchair propulsion [32,33].
Unfortunately, we were unable to perform the automatic
evaluation for the controlled flight item, as nearly all participants
were able to control their movement during transferring.
Participants in the current study were expert WU with good
upper body strength. However, in a population of novice WU,
this item could be particularly important in helping to identify
difficulties and highlight the absence of postural control which
can be linked to an increased risk of falling [34].

The choice of using a single chest-mounted accelerometer for
the automatic transfer quality evaluation limited our assessment
to 3 items of the TAI. However, this evaluation can have
important clinical implications if extended to transfers performed
in everyday settings. For example, the use of a head-hip

relationship during wheelchair transfers has been shown to
reduce muscular activity [35], shoulder forces [24], and increase
stability [36]. Additionally, while a smooth landing is not
necessarily linked with a reduction in the upper limb forces
measured during wheelchair transfers, it offers an important
indication of safety, as poor control in the final stage of the
transfer can lead to an increased risk of falling [37].

Despite not reaching 100% accuracy, the current study shows
the potential of using a single chest-mounted sensor to detect
the occurrence of wheelchair transfers. Previous research by
Garcia-Masso et al [11] included the chest sensor to increase
the accuracy of classification when combined with
wrist-mounted sensors but failed to investigate the data from
the chest alone. Our results show that such a sensor is as
powerful as a pair of wrist sensors in detecting transfers.

The placement on the chest also allowed for the quality of
movement to be evaluated. However, this sensor alone is not
sufficient to measure the exact start and end of a transfer (or
other items of TAI). Therefore, future work should investigate
the use of an unobtrusive second sensor to aid with accurate
detection (eg, a pressure switch on the wheelchair itself).

It should be noted that, even if the data from the current study
are not directly comparable with [11], our dataset had increased
complexity due to its higher ecological variability and to the
continuous detection of such events. Indeed, we attempted to
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replicate a typical pattern of daily activities within a WU’s day
by asking participants to wear the accelerometer while traveling
and resting between scenario activities. This makes detecting
transfers a more difficult task than when transfers are completed
cyclically for up to a minute at a time between surfaces of a
fixed height, and without any change in scenario.

The detection of transfers was more successful for some
participants than others. The Naïve Bayes classifiers were the
most accurate across all participants. However, it was
unbalanced and overpredicted the number of transfers when no
transfer was present. Despite this the Naïve Bayes classifiers
were more robust, ensuring an accuracy of more than 80% for
all participants. When the more balanced MLR was used the
accuracy for participant 1 (male, 26 years of age) and 2 (male,
26 years of age) dropped below 70%. It is unclear why these
participants were so affected. Future work should look to
replicate our work in the wild and with a larger and more
heterogeneous sample of WU, which we believe would begin
to address the limitations of the current dataset. In fact, despite
our efforts, the current set of participants included mainly males
with SCI. Although the imbalance of genders and medical
conditions among participants are not uncommon in wheelchair
studies [38], it can limit the potential for generalization of
results. Further research could also be carried out to identify
alternative and additional locations for sensor positioning with
the aim to maximize the accuracy of transfer detection.

Future Developments
Overall, the use of machine learning techniques to automatically
detect and evaluate wheelchair transfers shows good potential
for future clinical and well-being applications. A wearable
system would allow people to self-monitor their transfers and
seek additional medical help as and when required. Also, the
system could be used to provide feedback to WU, helping them
to identify potential weaknesses and providing suggestions for
improvements. If paired with data concerning, for example—the

environment, the emotional state of the WU, and time of day—a
more complex picture of wheelchair transfers can be built, and
better feedback and support mechanisms put in place. Therefore,
the larger aim of our project is to develop a wearable system
capable of continuously tracking and giving real-time feedback
to WU on their transfer ability as they go about their life. Future
developments should look into the possibility to combine the
chest accelerometer with a portable surface electromyography
system placed on the arm, as this could allow for a complete
picture of the transfer skills to be captured. This information
could then be used to provide more detailed feedback to the
WU to help them train and practice the movement in real-life
contexts.

Finally, the ability to easily map transfer difficulties in the built
environment could also allow WU to share their experiences
and provide information about accessibility standards of various
establishments (ie, hotel rooms, restaurant toilet). This could
also be extended to lower- and middle-income countries, where
the majority of disabled people live, who frequently do not have
access to rehabilitation programs [39].

Conclusions
In this study, we investigated the use of a single chest-mounted
accelerometer to monitor the occurrence of wheelchair transfers
and evaluate their quality under three ecological settings. Using
features extracted from the accelerometer we were able to
improve the accuracy of detection of transfers for the ubiquitous
computing literature in this area while also detecting key
elements of the quality of movement at performance levels
observed for other aspects of the movements. Results from this
study open new possibilities for unobtrusive monitoring and
evaluation of the performance of wheelchair transfers in the
real world that could lead to important applications for
wheelchair transfers training, upper limb injury prevention, and
improved accessibility.
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T(n): thoracic spinal cord level of injury
WU: wheelchair user(s)
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