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Abstract

Background: Functional arm movements generally require grasping an object. The possibility of detecting and counting the
action of grasping is believed to be of importance for individual with motor function deficits of the arm, as it could be an indication
of the number of the functional arm movements performed by the individuals during rehabilitation. In this exploratory work, the
feasibility of using armbands recording radial displacements of forearm muscles and tendons (ie, force myography, FMG) to
estimate hand grasping with healthy individuals was investigated. In contrast to previous studies, this exploratory study investigates
the feasibility of (1) detecting grasping when the participants move their arms, which could introduce large artifacts to the point
of potentially preventing the practical use of the proposed technology, and (2) counting grasping during arm-reaching tasks.

Objective: The aim of this study was to determine the usefulness of FMG in the detection of functional arm movements. The
use of FMG straps placed on the forearm is proposed for counting the number of grasping actions in the presence of arm
movements.

Methods: Ten healthy volunteers participated in this study to perform a pick-and-place exercise after providing informed
consent. FMG signals were simultaneously collected using 2 FMG straps worn on their wrist and at the midposition of their
forearm, respectively. Raw FMG signals and 3 additional FMG features (ie, root mean square, wavelength, and window symmetry)
were extracted and fed into a linear discriminant analysis classifier to predict grasping states. The transition from nongrasping to
grasping states was detected during the process of counting the number of grasping actions.

Results: The median accuracy for detecting grasping events using FMG recorded from the wrist was 95%, and the corresponding
interquartile range (IQR) was 5%. For forearm FMG classification, the median accuracy was 92%, and the corresponding IQR
was 3%. The difference between the 2 median accuracies was statistically significant (P<.001) when using a paired 2-tailed sign
test. The median percentage error for counting grasping events when FMG was recorded from the wrist was 1%, and the
corresponding IQR was 2%. The median percentage error for FMG recorded from the forearm was 2%, and the corresponding
IQR was also 2%. While the median percentage error for the wrist was lower than that of the forearm, the difference between the
2 was not statistically significant based on a paired 2-tailed sign test (P=.29).

Conclusions: This study reports that grasping can reliably be counted using an unobtrusive and simple FMG strap even in the
presence of arm movements. Such a result supports the foundation for future research evaluating the feasibility of monitoring
hand grasping during unsupervised ADL, leading to further investigations with individuals with motor function deficits of the
arm.

(JMIR Rehabil Assist Technol 2017;4(1):e5) doi: 10.2196/rehab.6901
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Introduction

Individuals with motor function deficits of their arm (eg,
individuals with stroke and a hemiparetic arm) often
involuntarily avoid using their weak arm during the activities
of daily living (ADL)[1,2], leading to an inevitable and gradual
degradation of their ability to move their arm. Published studies
have shown that increasing the use of a person’s weak arm is
believed to be an important factor for a successful recovery [3].
Technologies that provide objective feedback to the individual
on the use of their arm could potentially encourage them to be
more proactive in using their affected arm [4], and consequently
gradually improve their arm motor functions.

Some studies have used accelerometer-based devices to capture
gross movements of the arm [3,5,6] and provide that information
as activity feedback to the individual. However, such devices
generally cannot discern between movements that are functional
and believed to be relevant for the recovery [7,8] (ie, grasping
a glass and drinking) from those that are not functional (ie, arm
movements induced by movements of the body, such as turning,
walking, moving during sleeping) [1,3]. Therefore,
accelerometer-based devices could provide inaccurate and
potentially counterproductive feedback [1].

Devices with the ability to detect grasping motions, which is
generally required during functional arm movements, could
potentially provide a more suitable indication of functional use
of the upper limb [2,9]. Studies showed that exercising the arm
by grasping an object has the potential to greatly improve
rehabilitation outcomes [10,11]. Hence, detecting the number
of grasping actions performed by an individual during ADL
could be used as feedback to facilitate rehabilitation. In addition
to uses for rehabilitation, the ability to unobtrusively detect
grasping motions could be used in applications such as
monitoring the repetitive hand activity level of a worker for
load transfer tasks [12], or could be used in identification of
hand-held objects [13]. Hence, innovative solutions to detect
grasping motions are, therefore, in need.

Currently, commercial devices capable of detecting grasping
motions do exist. They are mostly based on either a vision-based
approach or using a wearable technology approach such as
wearing data gloves. The vision-based systems, such as
Microsoft’s Kinect [14], Leap Motion Controller [15], and
Optotrak [16], have to be mounted externally to the user’s body
and are generally used in well-controlled indoor environments
such as a rehabilitation center or clinic. They cannot be used to
monitor ADL, especially when the individual is in an outdoor
setting. On the other hand, the use of a data glove, such as the
CyberGlove [17], can be used for monitoring grasping motions
outdoors. However, data gloves are generally not practical for
use by individuals with a clutched hand, as in the case of
individuals with a hemiparetic arm resulting from stroke. In
fact, they require a considerable effort to be donned and doffed.
Furthermore, they cannot be used in many ADL, such as
washing dishes, taking a shower, etc, as they are not waterproof

or are simply uncomfortable. Data gloves also reduce the tactile
sensation of the hand and fingers, which poses a further barrier
for being accepted by the users [18,19].

In addition to the above-mentioned commercially available
technologies, the academic community has investigated different
approaches to classify grasping and other hand gestures. One
of these approaches is based on surface electromyography
(sEMG) recorded from the forearm [20]. While such an
approach could potentially be used in a large variety of
environments, including outdoors, its signal quality may degrade
due to many environmental factors, such as sweating and
electrical noise, which has been shown to drastically affect its
performance [21]. Furthermore, medical-grade sEMG systems
capable of capturing low noise sEMG signals generally cost
thousands of US dollars (eg, Noraxon sEMG system), which
makes them unsuitable for being implemented in practice.

An alternative approach to detect grasping is force myography
(FMG). FMG is a technique that uses sensors to capture
displacements of muscles, skin, and tendons [22]. This technique
was also referred to as topographic force mapping [21], residual
kinetic imaging [23], or muscle pressure distribution mapping
[24]. Although the FMG technique is relatively unexplored and
less standardized compared with sEMG, it presents different
potential advantages over the latter. Specifically, FMG signals
do not degrade due to sweating or electrical noise [21]. As a
consequence, the related hardware for the signal acquisition is
also less sophisticated and expensive. While FMG devices are
currently not commercially available, an experimental prototype
of an FMG signal acquisition device costs less than US $50
[25].

The use of FMG can be dated back as early as the 1960s, when
FMG was proposed for controlling a single-degree prosthetic
terminal device [26]. Since then, the use of FMG for controlling
hand prosthesis has gained some interest in the research
community [27-33]. At the same time, researchers also explored
the use of FMG for individuals with intact limbs for various
applications. For example, FMG signals taken from healthy
individuals were studied for regressing isometric force applied
by the fingers [22,25], as well as for recognizing different hand
gestures and finger movements [24,31,34,35]. Also, a
preliminary test performed by Yungher and Craelius showed
that regressing the grasping force through the forearm FMG of
individuals with poststroke condition was viable [36]. Recently,
robotic orthosis with FMG sensing capability were proposed
for potential stroke rehabilitation applications [37,38].

FMG signals to detect hand movements are generally extracted
from the middle of the forearm where large radial displacements
can be recorded [22,24,25,31,34,39-42]. Recent studies have,
however, explored the possibility of estimating hand movements
by processing FMG signals recorded at the wrist. For instance,
Morganti et al proposed a wrist strap consisting of four
force-sensing resistors (FSRs) to detect wrist positions [43].
Dementyev and Paradiso subsequently developed a wrist strap
that was capable of deciphering 6 static hand gestures [44]. The
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works of both Morganti and Dementryev showed the potential
of embedding FMG sensors inside a watch strap, which could
make the technology acceptable for users, especially those who
may highly value the cosmetics of the device.

The large majority of studies on FMG for the upper extremities
presented in the literature considered exploratory tests in very
controlled scenarios, where healthy volunteers were asked to
move their hand or wrist while maintaining a fixed elbow
position [21,22,24,25,29,31,35,43-46]. Despite being able to
obtain high prediction accuracy, this approach does not truly
reflect the capability of FMG for detecting hand action in a
practical scenario, in which arm movements are generally
present. To the best of the authors’ knowledge, the only studies
that included arm movements with the use of FMG are the ones
performed by Ogris et al [47] and Sadarangani and Menon [48].
Both of their studies used FMG in conjunction with inertial
measurement unit (IMU) to decipher various ADL. The result
of Ogris’s work showed that FMG improved classification
accuracies of some ADL; however, the capability of using FMG
to decipher hand action was not fully investigated. In the other
study, Sadarangani and Menon’s work focused on the
investigation of detecting hand actions, but only for 3 limited
scenarios.

As a fundamental step toward the development of a technology
suitable to detecting grasping motions in the presence of arm
movements as an indirect estimation of functional arm
movements, this study investigates the ability of using FMG to
count the number of grasping motions during a series of
pick-and-place (PAP) actions. Two wireless FMG straps were
prototyped and placed close to the wrist and on the forearm of
10 healthy individuals for this study.

Methods

FMG Signal Extraction and Data Transmission
Figure 1 shows the 2 FMG strap prototypes used in this study.
The strap in the left of the figure is 28 cm long and it was
designed to be donned on the forearm while the strap in the
right is shorter (19 cm) and was designed to be donned on the
wrist, like a watch. Each strap had 8 FSR sensors (FSR 402
from Interlink Electronics), which were evenly distributed on
the straps’ inner surface (see Figure 1).

A single FSR sensor has 2 terminals: one terminal is connected
to a common analog input pin of a microcontroller (Atmega
328p from Atmel) with an internal pull-up resistor (37.5 kΩ)
equipped, and the other terminal is connected to a digital control
pin as shown in Figure 2.

The analog input pin takes the reading of the signal and converts
it into a 10-bit unsigned integer value. Since only 1 analog pin
was used for sampling, the signal of each FSR was sampled
sequentially. The order of sampling was determined by the
digital control pin. When the selected FSR signal was ready to
be sampled, the corresponding control pin was set to low, and
the other control pins were set to be in high impedance states.
At any single moment, only 1 control pin would be set to low
and others would be changed to high impedance state in order
to guarantee independent sampling. This configuration used a

single analog pin with internal pull-up resistor in order to obtain
the most simplified design under the constraints of the selected
inexpensive microcontroller.

The sampled data were transmitted wirelessly to a personal
computer using a generic Bluetooth module (HC-05). A
custom-made application with real-time signal display was
developed in LabVIEW on a personal computer for querying
and storing the sample data. When sampling began, the
application sent a command to the microcontroller to retrieve
a set of FSR data at every 100 milliseconds (10 Hz) as proposed
by Amft et al [40].

Experimental Protocol
An experimental protocol was designed to capture both wrist
and forearm FMG signals simultaneously during a PAP exercise.
Before the experiment, the forearm FMG strap was donned on
the belly of the right forearm of a volunteer with the help of the
research assistance. The wrist FMG strap was instead donned
on the distal end of the forearm (next to the ulna styloid process,
see Figure 3). In order to reduce signal inconsistency due to the
placement of the strap for different volunteers, the first sensor
near the tail end of the forearm strap (see Figure 1) was always
placed on the bulk of the flexor carpi ulnaris, and the wrist
counterpart was always placed near the ulna styloid process.
However, it should be noted that the rest of the sensors were
not positioned on specific muscles or tendons (the FSR were
evenly distributed in the strap). This approach was intentionally
followed to avoid personalization of the strap and provide a
generic strap that could be used by a layperson at home. Finally,
another FSR sensor (FSR 400 Interlink Electronics) was taped
to the pulp of the thumb to obtain the true label for
investigational purposes.

Once the straps were donned, the volunteer was asked to fully
extend the fingers and then make a fist 3 times, while the
research assistant monitored the raw signal through visual
feedback from the display of the LabVIEW application. This
hand action was shown to be able to generate a clear and visually
distinguishable FMG pattern for healthy individuals [29,40,44],
and therefore, the action was used to ensure the strap was able
to register muscle-tendon movement activities. If this action
did not generate a clear FMG pattern, the research assistant
would readjust the tightness of the sensor. Also, the assistant
would ensure the strap did not block blood circulation or cause
discomfort to the volunteer through his or her oral feedback.
On average, this calibration procedure took less than 3 minutes
for each volunteer.

In the experiment, the volunteers sat in front of a table as
illustrated in Figure 4. They were then asked to pick up and
place a cylindrical object from and to 6 locations following
different sequences. The object used in the experiment was a
12-cm high hollow cylinder with a radius of 3 cm. It weighed
only 73 g so that the participants did not need to apply a large
force to lift the object. The 6 locations included 1 start location
(Location 0) and 5 other target locations (Locations 1-5).
Locations 1-5 were placed around Location 0, at a distance of
40 cm. Using Location 0 as the reference, each of the 5 locations
were 30 degrees apart from the adjacent one. The elevations of
the 5 target locations were 30 cm, 1 cm, 40 cm, 10 cm, and
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20cm from the table, respectively. Each location had a circular
area with a 5-cm radius, such that the upper limb joints of the
volunteer must be highly coordinated in order to successfully
place the object on the target locations.

In order to capture FMG signals in the presence of various arm
movements, 3 PAP sequences were designed for the participants
to perform. These PAP sequences required the coordination of
the shoulder, the elbow, wrist, and hand. Therefore, the FMG
patterns that were associated with some of the elbow
flexion/extension, forearm pronation/supination, wrist
flexion/extension/abduction/adduction, hand opening/closing,
and the overall arm motion would be captured. Some examples
of the captured movement during the PAP sequences are shown
in Figure 5.

In the first sequence, the participant was asked to pick up the
object from the start location and place it onto the target

locations at a pace comfortable for them. Then the participant
retrieved their hand to the start location without the object. Next,
the participant picked up the object from the current location,
and returned it to the start location. Finally, the participant
released the object completely before starting the next PAP
action. In total, each participant performed 10 PAP actions for
the first action sequence as shown in the left picture of Figure
6. In the second sequence, the participants performed an
additional 10 PAP actions following the order shown in the
middle of Figure 6. In the third sequence, the participants
repeated the path of the second sequence but in a reversed order,
as shown in the right of Figure 6. Each participant was asked
to repeat the 3 sequences (30 distinct PAP actions in total) 5
times. With 3 sequences and 5 repetitions, a total of 150 PAP
actions were recorded.

Figure 1. Wireless FSR straps: (a) wireless FSR strap for the forearm and (b) wireless FSR strap for the wrist.
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Figure 2. Schematic for FMG signal extraction and data transmission. The microcontroller sampled the signal from 8 FRS sensors, and the data were
sent wirelessly to the computer through the Bluetooth transmitter module.

Figure 3. FSR straps placement: (a) forearm supinated view and (b) forearm pronated view.
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Figure 4. Experimental setup. The start location is shown in gray, the five target locations are shown in green, and the object for grasping is shown in
yellow.
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Figure 5. Examples of upper limb position during the PAP sequence: (a) grasping the object from start position; (b) transporting the object from start
position to target location 4; and (c) transporting the object from target location 2 to 4.
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Figure 6. PAP action sequence. The red circles indicate the target positions, the arrows indicate the direction of the PAP actions, and the numerical
labels indicate the orders of the steps in each sequence: (a) first PAP action sequence; (b) second PAP action sequence; and (c) third PAP action sequence.

Figure 7. Data processing sequence.

Participants
Ten healthy volunteers aged between 21 and 42 years
participated in the experiment. Each participant signed an
informed consent form (approved by the Office of Research

Ethics, Simon Fraser University) before entering the study.
Their wrist and forearm belly circumferences were recorded for
performance analysis and are shown in Table 1.The average
circumference of the wrist and forearm belly are 16.81 cm (SD
1.11) and 26.2 cm (SD 3.15), respectively.
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Table 1. Participant statistics.

Forearm belly circumference (cm)Wrist circumference (cm)ID

2816.51

27192

2717.53

27164

28.517.65

2715.56

17167

26188

26.516.59

2815.510

26.216.81Average

3.151.11SD

Data Processing
The data collected from each participant consisted of both wrist
and forearm FMG positions. The 2 streams of data were
processed through identical but independent treatments. The
collected data were first divided into training and testing sets.
The training set data consisted of the first 30 PAP actions, and
the testing set consisted of the rest of the 120 PAP actions data
sets. The training set was used for extracting relevant statistical
information about the signals and for generating a classifier
model. The testing set was used for examining the generalized
performance of the classifier for detecting grasping. The overall
data processing sequence is shown in Figure 7.

As shown in Figure 7, the raw FMG data of each channel was
first centered by subtracting its mean and then normalized using
its standard deviation. Both the mean and standard deviation
parameters were obtained from the training set.

Next, feature extraction was performed. The raw FMG data
were considered as primary feature of the signal. Three
additional signal features, namely the root mean square (RMS),
waveform length (WL), and window symmetry (WS), were
extracted from the raw data with a 300 ms window and a step
size of 100 ms.

RMS is the averaged signal magnitude of each window and its
equation is shown in Figure 8. In the equation, xi is the value

of the ith sample in the processing window and N is the window
size, which in our case was 3.WL is the sum of the change of
the input samples within the processing window, which provides
speed-related information to the classifier. The formula for
computing WL is shown in the middle of Figure 8.

WS is the difference between the average of the first N data
points and the one of the last N data points, which can provide
directional information of the change of the input samples. The
formula for computing WS is shown in the bottom of Figure 8.
A total of 4 features were extracted from each channel including
the normalized raw input signal magnitude. Since there were 8

input channels for each of the wrist and forearm FMG straps,
a total of 32 features were extracted, respectively. Each of the
extracted features were once again centered and normalized
based on their mean and standard deviation obtained from the
training set before being classified using the supervised
classification scheme.

Under the supervised classification scheme, the classifier needs
to be trained using true label obtained from external source. In
our case, the labeling signal was the one recorded by the FSR
sensor placed on the thumb. This signal measured the amount
of contact force between the object and the thumb. If the contact
force was less than 2% of the maximum, then the corresponding
FMG data was labeled as nongrasping (class 1); otherwise, the
FMG data was labeled as grasping (class 2).

Among different supervised classifiers, linear discriminant
analysis (LDA) classifier using Fisher discriminant criteria is
one of the most widely used for analysis. LDA fits a multivariate
normal density to each class with a pooled estimate of
covariance. It is capable of revealing linear separability of the
signal features. Additionally, LDA is computationally efficient
and suitable to be implemented in a microcontroller [49].
Therefore, it was selected for use in this study.

The output of the LDA classifier was the predicted state of the
hand. In order to count the number of grasping actions, the
transition from nongrasping to grasping state needed to be
identified. This transition could be detected by subtracting the
current state output with the previous one. A positive result
indicated a grasping action has occurred. However, the accuracy
of such a counting method could be sensitive to any small
glitches (misclassifications over a short period, eg, <1s) in the
classification data output stream. Hence, an average filter was
applied to smooth out the output stream of the classifier. The
window size of the filter could affect the overall performance
in terms of the counting accuracy and the delay. Therefore, the
effect of different window sizes on the counting performance
was examined (see Results section).
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Figure 8. Equations for FMG feature extraction: (a) Root mean square, (b) Waveform length, and (c) Window symmetry.
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Figure 9. Boxplot for FMG classification accuracies of the 10 participants. The bottom and top of each box are the first and third quartiles of the data
set, respectively. The band inside the box is the median. The ends of the dashed lines (whiskers) are the minimum and maximum of the data. The red
and blue boxes indicate classification accuracies related to FMG collected from the wrist and forearm, respectively. (a) Accuracies computed using
training set data. (b) Accuracies computed using testing set data.
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Figure 10. Classification result comparison: (a) accuracy comparison using wrist FMG and (b) accuracy comparison using forearm FMG.

Figure 11. Regression plots for force-myography (FMG) classification accuracies of the 10 participants: (a) wrist FMG classification accuracies versus
wrist circumference; (b) forearm FMG classification accuracies versus wrist circumference; (c) wrist FMG classification accuracies versus time per
action; and (d) forearm FMG classification accuracies versus time per action.
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Figure 12. Boxplots for grasp counts versus number of filtered samples: (a) result generated using wrist FMG and (b) result generated using forearm
FMG.
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Figure 13. Boxplots for percentage error of grasp counts versus number of filtered samples: (a) result generated using wrist FMG and (b) result generated
using forearm force-myography.

Performance Evaluation
The overall performance of the proposed method was evaluated
based on 2 metrics: the classification accuracies and percentage
errors of the grasp count obtained from the test set.

The classification accuracy was calculated based on the sum of
the correctly classified sample over the total number of samples.
The difference of classification accuracies between wrist and
forearm FMG using LDA was evaluated. Also, the performance
of LDA was compared with other 2 popular classifiers, namely
the Radial Basis Function kernel Support Vector Machine
(RBF-SVM) and the 2-layer Artificial Neural Network (ANN).
In addition, the correlations between the accuracies and action
speeds, as well as the size of the wrist or forearm were assessed
using a regression method.

The percentage error of the grasp count was based on the result
of the absolute difference between the predicted and the
expected counts over the expected one. The expected count for
the test set was 120 in this study. The difference between the
errors of the wrist and forearm FMG approaches was also
assessed.

Paired sign test and Kruskal-Wallis test were used for examine
the statistical significance of the obtained results. All the
statistical analysis was performed using the same significance
level (alpha) of .05.

Results

LDA Classification Results
The LDA classification accuracies of the 10 participants for
nongrasping (class 1) and grasping (class 2) an object are shown
in Figure 9. The combined accuracies of the 2 classes are shown
in the first pair of results on the left of this figure (see “Overall
accuracies”). Due to the fact that the results were not normally
distributed, the median accuracy was used as the indicator for
classification performance.

For the FMG recording from the wrist, the median training
accuracy (see the top of Figure 9) was 97% and the
corresponding interquartile range (IQR) was 2%. These high
training accuracies suggest that FMG patterns recorded from
the wrist are suitable to detect grasping and nongrasping during
PAP actions. The median accuracy for the testing data set (see
the lower plot of Figure 9) was 95% and the corresponding IQR
was 5%. The high accuracies for both the training and testing
data suggested that the training data was a good representation
of the testing data set; no under- or overfitted phenomena was
observed.

Similar results were obtained for FMG data recorded from the
forearm: the median training accuracy was 95% and the
corresponding IQR was 4%. The median testing accuracy was
91% and the corresponding IQR was 3%.
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The difference between the medians of the wrist and forearm
FMG testing accuracies was 4%. With a P value less than .001,
the paired right-tailed sign test showed that the prediction using
wrist FMG had a statistically significantly higher median
accuracy than the one using forearm FMG.

The second pair of results in Figure 9 (see “Accuracies for
nongrasping”) shows the prediction accuracies when the
participants did not grasp the object. For FMG recorded from
the wrist, the median testing accuracy was 96% and the
corresponding IQR was 2% (see the lower plot of Figure 9).
For FMG recorded from the forearm, the median testing
accuracy was 94% and the corresponding IQR was 8%. With
P value equals to .94, the paired right-tailed sign test did not
show that the prediction accuracy of using wrist FMG was
statistically different from the one using the forearm FMG for
the nongrasping state.

The third pair of results in Figure 9 (see “Accuracy for
grasping”) shows the prediction accuracies while the participants
grasped the object. For FMG recorded from the wrist, the
median testing accuracy was 95% and the corresponding IQR
was 4%. For FMG recorded from the forearm, the median testing
accuracy was 85% and the corresponding IQR was 4%. With a
P value less than .001, the paired right-tailed sign test showed
that FMG recorded from the wrist yielded a better prediction
accuracy for grasping than FMG recorded from the forearm.

Classification Result Comparison Between LDA and
Other Classifiers
The performance of using LDA was compared with the ones of
RBF-SVM and ANN. Standard model generation procedures
for SVM and ANN, which are described in [50] and [51], were
followed. For training the SVM model, a ten-fold
cross-validation procedure was used to obtain best RBF
parameters. For training the ANN model, a 2-layer network
with 100 hidden nodes was trained based on a back-propagation
algorithm. The obtained testing accuracies from all 3 classifiers
are shown in Figure 10. For both wrist and forearm FMG
classifications, no statistically significant difference among the
results could be established using the Kruskal-Wallis test. The
P values obtained from the test were .5 for wrist FMG
classification and .9 for forearm FMG classification.

Classification Results and Participants’ Physical and
Performance Factors
In order to examine if the size of the participants’ limbs and
action speeds influence the classification accuracies, 4 regression
plots were generated and shown in Figure 11.

The first row of Figure 11 shows the regression plots of
accuracies versus the wrist and the forearm circumference,
respectively; the second row shows the regression plots of
accuracies of the wrist and the forearm FMG classification
versus the average time for the participant to complete a PAP
action, respectively. With all P values larger than the specified
significance level (alpha=.05), no statistically significant
correlation could be established between accuracies and the 2
factors.

Grasping Count Result
In order to assess the effect of the filtering window, the grasp
counts of the participants were recomputed using different
window sizes. Figure 12 shows the corresponding grasping
count using box plot for the window sizes of 1-20 samples. The
expected counts are shown as a solid line, which was 120 in
this experiment.

Without averaging (sample size equals 1), the numbers of
grasping were overestimated by a large margin for all the
participants’ data. As the size of the averaging window
increased, the counts were closer to the expected value in
general. However, when the size continued to increase, the count
became increasingly underestimated. On the basis of the result
shown in Figure 12, medians of the counting error smaller than
5% were obtained when the number of filtered samples ranged
between 4 and 11. The counting errors within such a range of
filtered samples are shown in Figure 13.

As shown in Figure 13, the smallest maximum percentage errors
were obtained by using 7 filtered samples for both wrist and
forearm FMG counts (5% maximum percentage errors for both
cases). Under such conditions, the median percentage error for
wrist FMG was 1%, and the corresponding IQR was 2%. For
the forearm FMG, the median percentage error was 2%, and
the corresponding IQR was also 2%. A P value of .29 was
obtained by using the paired 2-side sign test. Despite the wrist
FMG having a smaller median, the statistical significant
difference between the 2 FMG counts could not be established.

Discussions

Primary Findings
The LDA classifier was selected as the main classifier for this
study, and its performance was as good as the more
computational-intensive SVM and ANN classifiers. The LDA
classification result (see Figure 9) shows that the wrist FMG
band produced significantly higher classification accuracies
than the forearm FMG band for detecting a grasping state, but
no statistical difference was found for detecting a nongrasping
state. This result could be associated to the fact that the grasping
action occurred closer to the wrist than the forearm. During the
object manipulation, movement of the thumb could be better
registered by the wrist strap as the tendon and the nearby skin
movements contributed to a more distinct FMG pattern. In
addition, the FMG from the forearm also captured the pattern
related to elbow movement [34], which was a confounding
factor for grasp classification. Nevertheless, both FMG methods
were capable of producing high classification accuracies (>85%)
for all participants. These results confirmed that FMG was an
effective method to detect hand grasping even with the presence
of complex arm movements. The scope of this study focuses
on the capability of FMG only, however, other wearable sensors
such as an IMU should be considered along with FMG to further
improve accuracy.

The regression method was used to test if the size of the
participants’ limbs and action speeds influence the classification
accuracies. The results of the test showed there were no
statistically significant correlation between the accuracies and
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the 2 factors. These results suggested the performance of the
FMG method was independent of the limb size and action speed
in this study. However, since the participants in this study were
healthy individuals, the variations of their physical status and
action performance were expected to be insignificant. For future
investigation, grasping at various speeds by individuals with
different limb sizes should be considered.

The grasping counts were extracted from the filtered output of
the LDA classifiers. As shown in Figure 12, the size of the
filtering window largely influenced the accuracies of the counts.
Suitable window sizes (medians of the counting error smaller
than 5%) were identified to be from 4 to 11 samples, and such
window sizes could add 300 ms to 1000 ms of delays to the
system. Combined with the delay introduced by the feature
extraction process (300 ms), a grasping could be registered by
the system after at least 600 ms from the start of the action.
While such a delay might be problematic for some real-time
human machine interfaces [52-54], it is not considered to be of
concern for the targeted activity monitor application, as the
user’s instant action does not depend on the feedback [55-57].
Under the optimal settings, which was based on the smallest
maximum percentage error, a median percentage error of 1%
with IQR of 2% for the grasping count using the wrist FMG
was obtained. Compared with the results obtained using forearm
FMG, no statistically significant difference was established
using the paired sign test. These results show great potential for
both FMG approaches.

This study investigated the capability of using FMG to predict
and count grasping actions with healthy individuals. Therefore,
the knowledge obtained from this study can be directly applied
to the applications in which healthy individuals are the wearers
of the FMG bands. An example of such an application could
be for monitoring the repetitive hand activity level of a worker
during load transfer tasks. However, for rehabilitation
applications, as the targeted population will be the people with
a weak arm, such as individuals recovering from stroke, further
studies are needed to examine the transferability of the result
of this study. For example, in poststroke rehabilitation, the
targeted wearers are often seniors with limited mobility and
range of motion. Their muscles are normally much weaker than
the ones of healthy individuals, and may even have significantly
deteriorated if the individuals are chronic stroke patients. These
characteristics posed questions on whether the proposed FMG
method could be used with such a population. Currently, there

is lack of in-depth studies that examine the FMG pattern
characteristic of stroke patients or people with a weak arm.
However, the pilot investigation of Yungher and Craelius
showed that the grasping force could be regressed from the
forearm of stroke patients (n=4) with mild to moderate spasticity
[36]. This study indicated some useful FMG information could
still be extracted as long as the patients had some range of
motion on the limb. For object manipulation task, this type of
patient tends to produce larger grip force, but with less control
when compared with the healthy counterpart [58,59]. In such a
scenario, distinct FMG patterns associated with some
movements are still expected to be captured; however, the
consistency of the patterns is likely to be less. The inconsistency
due to muscle fatigue may also become more prominent, which
might require modification of algorithms to adjust the training
parameter of the classifier (eg, normalization parameters of the
FMG signals) in order to compensate for the change. In addition,
the FMG pattern can be very different among patients due to
the different degree of impairment. Because of these conditions,
the classifier model may need to be very user- and task-specific
in order to tailor for the needs and obtain high prediction
accuracy. In order to examine the transferability of the proposed
FMG approach for rehabilitation, testing on the stroke
population or individuals with weak arm should be the next
logical step.

Conclusions
The possibility of detecting and counting grasping in the
presence of arm movements (PAP exercise) was explored using
wrist and forearm FMG strap prototypes. The 2 main
performance parameters that were considered were classification
accuracy for detecting grasping and percentage error for
counting grasping. A high median grasping prediction accuracy
was obtained from 10 subjects (95% and 91% for FMG recorded
from the wrist and forearm, respectively). A low median
grasping count error was also found (1% and 2% for wrist and
forearm, respectively). These results provide evidence that
FMG-based straps could be used to monitor grasping activities
during functional arm movements in a controlled environment.
This work poses the foundation for future studies investigating
the applicability of using FMG to detect grasping in activities
of the daily living first with healthy participants and then with
individuals with a weak arm (eg, seniors, individuals with a
hemiparetic arm resulting from stroke).

Acknowledgments
The authors thank the members of the MENRVA lab, Dr Janice Eng, and Ms Lisa Fraser for their advices and feedback on the
use of the proposed technology. This work was supported by the Natural Sciences and Engineering Research Council of Canada,
the Canadian Institutes of Health Research, and the Michael Smith Foundation for Health Research.

Authors' Contributions
ZGX prototyped the FMG straps, implemented data collection software, performed experiments, analyzed the experimental
results, and participated in the manuscript preparation. CM, Principal Investigator of this research, contributed to the design of
the study, supervised the work, participated in the interpretation of the results and contributed in writing the manuscript. All
authors read and approved the final manuscript.

JMIR Rehabil Assist Technol 2017 | vol. 4 | iss. 1 | e5 | p. 16http://rehab.jmir.org/2017/1/e5/
(page number not for citation purposes)

Xiao & MenonJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conflicts of Interest
The Principal Investigator, Carlo Menon, and members of his research team have a vested interest in commercializing the
technology tested in this study, if it is proven to be successful and may benefit financially from its potential commercialization.
The data are readily available upon request.

References

1. Rand D, Eng JJ. Disparity between functional recovery and daily use of the upper and lower extremities during subacute
stroke rehabilitation. Neurorehabil Neural Repair 2012 Jan;26(1):76-84 [FREE Full text] [doi: 10.1177/1545968311408918]
[Medline: 21693771]

2. Lin K, Wu C, Wei T, Lee C, Liu J. Effects of modified constraint-induced movement therapy on reach-to-grasp movements
and functional performance after chronic stroke: a randomized controlled study. Clin Rehabil 2007 Dec;21(12):1075-1086.
[doi: 10.1177/0269215507079843] [Medline: 18042603]

3. Connell LA, McMahon NE, Simpson LA, Watkins CL, Eng JJ. Investigating measures of intensity during a structured
upper limb exercise program in stroke rehabilitation: an exploratory study. Arch Phys Med Rehabil 2014
Dec;95(12):2410-2419 [FREE Full text] [doi: 10.1016/j.apmr.2014.05.025] [Medline: 24946084]

4. Timmermans AA, Seelen HA, Willmann RD, Kingma H. Technology-assisted training of arm-hand skills in stroke: concepts
on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroeng Rehabil 2009
Jan 20;6:1 [FREE Full text] [doi: 10.1186/1743-0003-6-1] [Medline: 19154570]

5. Bailey RR, Klaesner JW, Lang CE. An accelerometry-based methodology for assessment of real-world bilateral upper
extremity activity. PLoS One 2014 Jul;9(7):e103135 [FREE Full text] [doi: 10.1371/journal.pone.0103135] [Medline:
25068258]

6. Bailey RR, Klaesner JW, Lang CE. Quantifying real-world upper-limb activity in nondisabled adults and adults with chronic
stroke. Neurorehabil Neural Repair 2015 Apr;29(10):969-978. [doi: 10.1177/1545968315583720] [Medline: 25896988]

7. Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil
2005 Feb;12(3):58-65. [doi: 10.1310/BQM5-6YGB-MVJ5-WVCR] [Medline: 16110428]

8. Arya KN, Verma R, Garg RK, Sharma VP, Agarwal M, Aggarwal GG. Meaningful task-specific training (MTST) for stroke
rehabilitation: a randomized controlled trial. Top Stroke Rehabil 2012 Jan;19(3):193-211. [doi: 10.1310/tsr1903-193]
[Medline: 22668675]

9. Castiello U. The neuroscience of grasping. Nat Rev Neurosci 2005 Sep;6(9):726-736. [doi: 10.1038/nrn1744] [Medline:
16100518]

10. Harris JE, Eng JJ, Miller WC, Dawson AS. A self-administered Graded Repetitive Arm Supplementary Program (GRASP)
improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial. Stroke 2009
Jun;40(6):2123-2128 [FREE Full text] [doi: 10.1161/STROKEAHA.108.544585] [Medline: 19359633]

11. Turton AJ, Cunningham P, Heron E, van WF, Sackley C, Rogers C, et al. Home-based reach-to-grasp training for people
after stroke: study protocol for a feasibility randomized controlled trial. Trials 2013 Apr 25;14:109 [FREE Full text] [doi:
10.1186/1745-6215-14-109] [Medline: 23782653]

12. Chen C, Hu YH, Yen TY, Radwin RG. Automated video exposure assessment of repetitive hand activity level for a load
transfer task. Hum Factors 2013 Apr;55(2):298-308 [FREE Full text] [doi: 10.1177/0018720812458121] [Medline: 23691826]

13. Theiss M, Scholl P, Van Laerhoven K. Predicting grasps with a wearable inertial and EMG sensing unit for low-power
detection of in-hand objects. 2016 Presented at: The 7th Augmented Human International Conference 2016; February 25-27,
2016; Geneva. [doi: 10.1145/2875194.2875207]

14. Cordella F, Di Corato F, Zollo L, Siciliano B, van der Smagt P. Patient performance evaluation using Kinect and Monte
Carlo-based finger tracking. 2012 Presented at: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob); June 24-27, 2012; Rome. [doi: 10.1109/BioRob.2012.6290794]

15. Tung JY, Lulic T, Gonzalez DA, Tran J, Dickerson CR, Roy EA. Evaluation of a portable markerless finger position capture
device: accuracy of the Leap Motion controller in healthy adults. Physiol Meas 2015 May;36(5):1025-1035. [doi:
10.1088/0967-3334/36/5/1025] [Medline: 25902961]

16. Grujic T, Bonkovic M. Measurement and analysis of human hand kinematics. International Journal of Medical, Health,
Biomedical and Pharmaceutical Engineering 2015;9:97-102 [FREE Full text]

17. Adamovich SV, Merians AS, Boian R, Tremaine M, Burdea GS, Recce M, et al. A virtual reality based exercise system
for hand rehabilitation post-stroke: transfer to function. 2004 Presented at: The 26th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society; 2004; San Francisco p. 4936-4939. [doi:
10.1109/IEMBS.2004.1404364]

18. Dipietro L, Sabatini A, Dario P. A survey of glove-based systems and their applications. IEEE Trans Syst, Man, Cybern
C 2008 Jul;38(4):461-482. [doi: 10.1109/TSMCC.2008.923862]

19. Zhou H, Hu H. Human motion tracking for rehabilitation—a survey. Biomed Signal Process Control 2008 Jan;3(1):1-18.
[doi: 10.1016/j.bspc.2007.09.001]

JMIR Rehabil Assist Technol 2017 | vol. 4 | iss. 1 | e5 | p. 17http://rehab.jmir.org/2017/1/e5/
(page number not for citation purposes)

Xiao & MenonJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://europepmc.org/abstract/MED/21693771
http://dx.doi.org/10.1177/1545968311408918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21693771&dopt=Abstract
http://dx.doi.org/10.1177/0269215507079843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18042603&dopt=Abstract
http://europepmc.org/abstract/MED/24946084
http://dx.doi.org/10.1016/j.apmr.2014.05.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24946084&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-6-1
http://dx.doi.org/10.1186/1743-0003-6-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19154570&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0103135
http://dx.doi.org/10.1371/journal.pone.0103135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25068258&dopt=Abstract
http://dx.doi.org/10.1177/1545968315583720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25896988&dopt=Abstract
http://dx.doi.org/10.1310/BQM5-6YGB-MVJ5-WVCR
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16110428&dopt=Abstract
http://dx.doi.org/10.1310/tsr1903-193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22668675&dopt=Abstract
http://dx.doi.org/10.1038/nrn1744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16100518&dopt=Abstract
http://stroke.ahajournals.org/cgi/pmidlookup?view=long&pmid=19359633
http://dx.doi.org/10.1161/STROKEAHA.108.544585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19359633&dopt=Abstract
http://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-14-109
http://dx.doi.org/10.1186/1745-6215-14-109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23782653&dopt=Abstract
http://europepmc.org/abstract/MED/23691826
http://dx.doi.org/10.1177/0018720812458121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23691826&dopt=Abstract
http://dx.doi.org/10.1145/2875194.2875207
http://dx.doi.org/10.1109/BioRob.2012.6290794
http://dx.doi.org/10.1088/0967-3334/36/5/1025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25902961&dopt=Abstract
http://waset.org/Publications?p=98
http://dx.doi.org/10.1109/IEMBS.2004.1404364
http://dx.doi.org/10.1109/TSMCC.2008.923862
http://dx.doi.org/10.1016/j.bspc.2007.09.001
http://www.w3.org/Style/XSL
http://www.renderx.com/


20. Liarokapis MV, Artemiadis PK, Kyriakopoulos KJ, Manolakos ES. A learning scheme for reach to grasp movements: on
EMG-based interfaces using task specific motion decoding models. IEEE J Biomed Health Inform 2013 Sep;17(5):915-921.
[doi: 10.1109/JBHI.2013.2259594] [Medline: 25055370]

21. Castellini C, Artemiadis P, Wininger M, Ajoudani A, Alimusaj M, Bicchi A, et al. Proceedings of the first workshop on
peripheral machine interfaces: going beyond traditional surface electromyography. Front Neurorobot 2014;8:22 [FREE
Full text] [doi: 10.3389/fnbot.2014.00022] [Medline: 25177292]

22. Wininger M, Kim NH, Craelius W. Pressure signature of forearm as predictor of grip force. J Rehabil Res Dev
2008;45(6):883-892 [FREE Full text] [Medline: 19009474]

23. Phillips SL, Craelius W. Residual kinetic imaging: a versatile interface for prosthetic control. Robotica 1999;23(3):277-282.
[doi: 10.1017/S0263574704001298]

24. Li N, Yang D, Jiang L, Liu H, Cai H. Combined use of FSR sensor array and SVM classifier for finger motion recognition
based on pressure distribution map. J Biomech Eng 2012 Mar;9(1):39-47. [doi: 10.1016/S1672-6529(11)60095-4]

25. Castellini C, Ravindra V. A wearable low-cost device based upon force-sensing resistors to detect single-finger forces.
2014 Presented at: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics; August
12-15, 2014; São Paulo. [doi: 10.1109/BIOROB.2014.6913776]

26. Lucaccini LF, Kaiser PK, Lyman J. The French electric hand: some observations and conclusions. Bull Prosthet Res
1966;10(6):31-51.

27. Rasouli M, Ghosh R, Lee WW, Thakor NV, Kukreja S. Stable force-myographic control of a prosthetic hand using
incremental learning. In: Conf Proc IEEE Eng Med Biol Soc. 2015 Aug Presented at: 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society; 2015; Milano p. 4828-4831. [doi: 10.1109/EMBC.2015.7319474]

28. Sanford J, Patterson R, Popa D. Surface EMG and intra-socket force measurement to control a prosthetic device. 2015
Presented at: SPIE 9494, Next-Generation Robotics II; and Machine Intelligence and Bio-inspired Computation: Theory
and Applications IX; June 25, 2015; Baltimore. [doi: 10.1117/12.2177399]

29. Radmand A, Scheme E, Englehart K. High resolution muscle pressure mapping for upper limb prosthetic control. 2014
Presented at: Proceeding of MEC - Myoelectric Control Symposium; August 19-22,2014; Fredericton p. 189-193.

30. Carbonaro N, Anania G, Bacchereti M, Donati G, Ferretti L, Pellicci G, et al. An innovative multisensor controlled prosthetic
hand. 2014 Presented at: IFMBE Proceedings; October 29-31, 2014; Paraná p. 93-96. [doi: 10.1007/978-3-319-00846-2_23]

31. Wang X, Zhao J, Yang D, Li N, Sun C, Liu H. Biomechatronic approach to a multi-fingered hand prosthesis. 2010 Presented
at: 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; September 26-29,
2010; Tokyo p. 209-214. [doi: 10.1109/BIOROB.2010.5627734]

32. Cho E, Chen R, Merhi L, Xiao Z, Pousett B, Menon C. Force myography to control robotic upper extremity prostheses: a
feasibility study. Front Bioeng Biotechnol 2016 Mar;4:18 [FREE Full text] [doi: 10.3389/fbioe.2016.00018] [Medline:
27014682]

33. Radmand A, Scheme E, Englehart K. High-density force myography: a possible alternative for upper-limb prosthetic control.
J Rehabil Res Dev 2016;53(4):443-456 [FREE Full text] [doi: 10.1682/JRRD.2015.03.0041] [Medline: 27532260]

34. Xiao ZG, Menon C. Towards the development of a wearable feedback system for monitoring the activities of the
upper-extremities. J Neuroeng Rehabil 2014 Jan 08;11:2 [FREE Full text] [doi: 10.1186/1743-0003-11-2] [Medline:
24397984]

35. Kadkhodayan A, Jiang X, Menon C. Continuous prediction of finger movements using force myography. J Med Biol Eng
2016 Jul 29;36(4):594-604. [doi: 10.1007/s40846-016-0151-y]

36. Yungher D, Craelius W. Improving fine motor function after brain injury using gesture recognition biofeedback. Disabil
Rehabil Assist Technol 2012 Nov;7(6):464-468. [doi: 10.3109/17483107.2011.650782] [Medline: 22283429]

37. Yap HK, Mao A, Goh JC, Yeow CH. Design of a wearable FMG sensing system for user intent detection during hand
rehabilitation with a soft robotic glove. 2016 Presented at: 6th IEEE International Conference on Biomedical Robotics and
Biomechatronics; June 26-29, 2016; Singapore. [doi: 10.1109/BIOROB.2016.7523722]

38. Xiao ZG, Elnady AM, Menon C. Control an exoskeleton for forearm rotation using FMG. 2014 Presented at: 5th IEEE
RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics; August 12-15, 2014; São Paulo. [doi:
10.1109/BIOROB.2014.6913842]

39. Lukowicz P, Hanser F, Szubski C, Schobersberger W. Detecting and interpreting muscle activity with wearable force
sensors. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Berlin: Springer; 2006:101-116.

40. Amft O, Troster G, Lukowicz P, Schuster C. Sensing muscle activities with body-worn sensors. 2006 Presented at:
International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06); April 3-5, 2006; Cambridge p.
138-141. [doi: 10.1109/BSN.2006.48]

41. Yungher DA, Wininger MT, Barr JB, Craelius W, Threlkeld AJ. Surface muscle pressure as a measure of active and passive
behavior of muscles during gait. Med Eng Phys 2011 May;33(4):464-471. [doi: 10.1016/j.medengphy.2010.11.012] [Medline:
21176884]

JMIR Rehabil Assist Technol 2017 | vol. 4 | iss. 1 | e5 | p. 18http://rehab.jmir.org/2017/1/e5/
(page number not for citation purposes)

Xiao & MenonJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://dx.doi.org/10.1109/JBHI.2013.2259594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25055370&dopt=Abstract
https://dx.doi.org/10.3389/fnbot.2014.00022
https://dx.doi.org/10.3389/fnbot.2014.00022
http://dx.doi.org/10.3389/fnbot.2014.00022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25177292&dopt=Abstract
http://www.rehab.research.va.gov/jour/08/45/6/pdf/Wininger.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19009474&dopt=Abstract
http://dx.doi.org/10.1017/S0263574704001298
http://dx.doi.org/10.1016/S1672-6529(11)60095-4
http://dx.doi.org/10.1109/BIOROB.2014.6913776
http://dx.doi.org/10.1109/EMBC.2015.7319474
http://dx.doi.org/10.1117/12.2177399
http://dx.doi.org/10.1007/978-3-319-00846-2_23
http://dx.doi.org/10.1109/BIOROB.2010.5627734
http://dx.doi.org/10.3389/fbioe.2016.00018
http://dx.doi.org/10.3389/fbioe.2016.00018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27014682&dopt=Abstract
http://www.rehab.research.va.gov/jour/2016/534/JRRD-2015-03-0041.html
http://dx.doi.org/10.1682/JRRD.2015.03.0041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27532260&dopt=Abstract
http://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-11-2
http://dx.doi.org/10.1186/1743-0003-11-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24397984&dopt=Abstract
http://dx.doi.org/10.1007/s40846-016-0151-y
http://dx.doi.org/10.3109/17483107.2011.650782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22283429&dopt=Abstract
http://dx.doi.org/10.1109/BIOROB.2016.7523722
http://dx.doi.org/10.1109/BIOROB.2014.6913842
http://dx.doi.org/10.1109/BSN.2006.48
http://dx.doi.org/10.1016/j.medengphy.2010.11.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21176884&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


42. Bin Ambar R, Hazwaj BM, Abdul MB, Bin Ahmad MS, Bin Abdul Jamil MM. Multi-sensor arm rehabilitation monitoring
device. 2012 Presented at: International Conference on Biomedical Engineering; May 28-30, 2012; Macau p. 424-429.
[doi: 10.1109/ICoBE.2012.6179051]

43. Morganti E, Angelini L, Adami A, Lalanne D, Lorenzelli L, Mugellini E. A smart watch with embedded sensors to recognize
objects, grasps and forearm gestures. Procedia Engineering 2012;41:1169-1175. [doi: 10.1016/j.proeng.2012.07.297]

44. Dementyev A, Paradiso J. WristFlex. 2014 Presented at: Proceedings of the 27th annual ACM symposium on User interface
software and technology - UIST ’14; October 5-8, 2014; New York p. 161-166. [doi: 10.1145/2642918.2647396]

45. Rekimoto J. GestureWrist and GesturePad: unobtrusive wearable interaction devices. 2001 Presented at: Proceedings Fifth
International Symposium on Wearable Computers; October 8-9, 2001; Zurich p. 21-27. [doi: 10.1109/ISWC.2001.962092]

46. Ravindra V, Castellini C. A comparative analysis of three non-invasive human-machine interfaces for the disabled. Front
Neurorobot 2014 Oct;8:24 [FREE Full text] [doi: 10.3389/fnbot.2014.00024] [Medline: 25386135]

47. Ogris G, Kreil M, Lukowicz P. Using FSR based muscule activity monitoring to recognize manipulative arm gestures.
2007 Presented at: 11th IEEE International Symposium on Wearable Computers; October 11-13, 2007; Boston p. 1-4. [doi:
10.1109/ISWC.2007.4373776]

48. Sadarangani G, Menon C. A wearable sensor system for rehabilitation apllications. 2015 Presented at: 2015 IEEE International
Conference on Rehabilitation Robotics; August 11-14, 2015; Singapore p. 672-677. [doi: 10.1109/ICORR.2015.7281278]

49. Garcia-Breijo E, Atkinson J, Gil-Sanchez L, Masot R, Ibañez J, Garrigues J, et al. A comparison study of pattern recognition
algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters. Sensors and
Actuators A: Physical 2011 Dec;172(2):570-582. [doi: 10.1016/j.sna.2011.09.039]

50. Chih-Wei H, Chih-Chung C, Chih-Jen L. A practical guide to support vector classification. BJU International 2008
Jun;101(1):1396-1400.

51. Swingler K. Applying neural networks: a practical guide. San Francisco: Morgan Kaufman Publishers, Inc; 1996.
52. Shimada S, Fukuda K, Hiraki K. Rubber hand illusion under delayed visual feedback. PLoS One 2009 Jul 09;4(7):e6185

[FREE Full text] [doi: 10.1371/journal.pone.0006185] [Medline: 19587780]
53. Antfolk C, D'Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert

Rev Med Devices 2013 Jan;10(1):45-54. [doi: 10.1586/erd.12.68] [Medline: 23278223]
54. Ritter W, Kempter G, Werner T. User-acceptance of latency in touch interactions. In: UAHCI 2015: Universal Access in

Human-Computer Interaction. Access to Interaction. Cham, Switzerland: Springer; 2015.
55. Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY. Validity of physical activity intensity predictions by ActiGraph,

Actical, and RT3 accelerometers. Obesity (Silver Spring) 2008 Aug;16(8):1946-1952 [FREE Full text] [doi:
10.1038/oby.2008.279] [Medline: 18535553]

56. Murphy SL. Review of physical activity measurement using accelerometers in older adults: considerations for research
design and conduct. Prev Med 2009 Feb;48(2):108-114. [doi: 10.1016/j.ypmed.2008.12.001] [Medline: 19111780]

57. Crouter SE, Dellavalle DM, Horton M, Haas JD, Frongillo EA, Bassett DR. Validity of the actical for estimating free-living
physical activity. Eur J Appl Physiol 2011 Jul;111(7):1381-1389 [FREE Full text] [doi: 10.1007/s00421-010-1758-2]
[Medline: 21153659]

58. Nowak DA, Hermsdörfer J, Topka H. Deficits of predictive grip force control during object manipulation in acute stroke.
J Neurol 2003 Jul;250(7):850-860. [doi: 10.1007/s00415-003-1095-z] [Medline: 12883929]

59. Naik SK, Patten C, Lodha N, Coombes SA, Cauraugh JH. Force control deficits in chronic stroke: grip formation and
release phases. Exp Brain Res 2011 May;211(1):1-15. [doi: 10.1007/s00221-011-2637-8] [Medline: 21448576]

Abbreviations
ADL: activity of the daily living
ANN: artificial neural network
FMG: force myography
FSRs: force-sensing resistors
IMU: inertial measurement unit
IQR: interquartile range
LDA: linear discriminant analysis
RBF-SVM: Radial Basis Function kernel Support Vector Machine
RMS: root mean square
sEMG: surface electromyography
WL: waveform length
WS: window symmetry

JMIR Rehabil Assist Technol 2017 | vol. 4 | iss. 1 | e5 | p. 19http://rehab.jmir.org/2017/1/e5/
(page number not for citation purposes)

Xiao & MenonJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://dx.doi.org/10.1109/ICoBE.2012.6179051
http://dx.doi.org/10.1016/j.proeng.2012.07.297
http://dx.doi.org/10.1145/2642918.2647396
http://dx.doi.org/10.1109/ISWC.2001.962092
https://dx.doi.org/10.3389/fnbot.2014.00024
http://dx.doi.org/10.3389/fnbot.2014.00024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25386135&dopt=Abstract
http://dx.doi.org/10.1109/ISWC.2007.4373776
http://dx.doi.org/10.1109/ICORR.2015.7281278
http://dx.doi.org/10.1016/j.sna.2011.09.039
http://dx.plos.org/10.1371/journal.pone.0006185
http://dx.doi.org/10.1371/journal.pone.0006185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19587780&dopt=Abstract
http://dx.doi.org/10.1586/erd.12.68
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23278223&dopt=Abstract
http://dx.doi.org/10.1038/oby.2008.279
http://dx.doi.org/10.1038/oby.2008.279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18535553&dopt=Abstract
http://dx.doi.org/10.1016/j.ypmed.2008.12.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19111780&dopt=Abstract
http://europepmc.org/abstract/MED/21153659
http://dx.doi.org/10.1007/s00421-010-1758-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21153659&dopt=Abstract
http://dx.doi.org/10.1007/s00415-003-1095-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12883929&dopt=Abstract
http://dx.doi.org/10.1007/s00221-011-2637-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21448576&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by G Eysenbach; submitted 27.10.16; peer-reviewed by A Tognetti, HK Yap, K Van Laerhoven; comments to author 08.12.16;
revised version received 09.02.17; accepted 10.02.17; published 16.05.17

Please cite as:
Xiao ZG, Menon C
Counting Grasping Action Using Force Myography: An Exploratory Study With Healthy Individuals
JMIR Rehabil Assist Technol 2017;4(1):e5
URL: http://rehab.jmir.org/2017/1/e5/
doi: 10.2196/rehab.6901
PMID: 28582263

©Zhen Gang Xiao, Carlo Menon. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org),
16.05.2017. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Rehabilitation and Assistive Technology, is properly cited. The complete
bibliographic information, a link to the original publication on http://rehab.jmir.org/, as well as this copyright and license
information must be included.

JMIR Rehabil Assist Technol 2017 | vol. 4 | iss. 1 | e5 | p. 20http://rehab.jmir.org/2017/1/e5/
(page number not for citation purposes)

Xiao & MenonJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://rehab.jmir.org/2017/1/e5/
http://dx.doi.org/10.2196/rehab.6901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28582263&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

