JMIR Publications

JMIR Rehabilitation and Assistive Technologies

Focusing on development and evaluation of rehabilitation and cyborg technologies


Recent Articles:

  • Heel strike feedback screen for stroke survivors and insole technology. Image created and copyright owned by authors.

    A Personalized Self-Management Rehabilitation System for Stroke Survivors: A Quantitative Gait Analysis Using a Smart Insole


    Background: In the United Kingdom, stroke is the single largest cause of adult disability and results in a cost to the economy of £8.9 billion per annum. Service needs are currently not being met; therefore, initiatives that focus on patient-centered care that promote long-term self-management for chronic conditions should be at the forefront of service redesign. The use of innovative technologies and the ability to apply these effectively to promote behavior change are paramount in meeting the current challenges. Objective: Our objective was to gain a deeper insight into the impact of innovative technologies in support of home-based, self-managed rehabilitation for stroke survivors. An intervention of daily walks can assist with improving lower limb motor function, and this can be measured by using technology. This paper focuses on assessing the usage of self-management technologies on poststroke survivors while undergoing rehabilitation at home. Methods: A realist evaluation of a personalized self-management rehabilitation system was undertaken in the homes of stroke survivors (N=5) over a period of approximately two months. Context, mechanisms, and outcomes were developed and explored using theories relating to motor recovery. Participants were encouraged to self-manage their daily walking activity; this was achieved through goal setting and motivational feedback. Gait data were collected and analyzed to produce metrics such as speed, heel strikes, and symmetry. This was achieved using a “smart insole” to facilitate measurement of walking activities in a free-living, nonrestrictive environment. Results: Initial findings indicated that 4 out of 5 participants performed better during the second half of the evaluation. Performance increase was evident through improved heel strikes on participants’ affected limb. Additionally, increase in performance in relation to speed was also evident for all 5 participants. A common strategy emerged across all but one participant as symmetry performance was sacrificed in favor of improved heel strikes. This paper evaluates compliance and intensity of use. Conclusion: Our findings suggested that 4 out of the 5 participants improved their ability to heel strike on their affected limb. All participants showed improvements in their speed of gait measured in steps per minute with an average increase of 9.8% during the rehabilitation program. Performance in relation to symmetry showed an 8.5% average decline across participants, although 1 participant improved by 4%. Context, mechanism, and outcomes indicated that dual motor learning and compensatory strategies were deployed by the participants.

  • Touchscreen Technology. Image sourced and copyright owned by authors.

    Studies Involving People With Dementia and Touchscreen Technology: A Literature Review


    Background: Devices using touchscreen interfaces such as tablets and smartphones have been highlighted as potentially suitable for people with dementia due to their intuitive and simple control method. This population experience a lack of meaningful, engaging activities, yet the potential use of the touchscreen format to address this issue has not been fully realized. Objective: To identify and synthesize the existing body of literature involving the use of touchscreen technology and people with dementia in order to guide future research in this area. Methods: A systematized review of studies in the English language was conducted, where a touchscreen interface was used with human participants with dementia. Results: A total of 45 articles met the inclusion criteria. Four questions were addressed concerning (1) the context of use, (2) reasons behind the selection of the technology, (3) details of the hardware and software, and (4) whether independent use by people with dementia was evidenced. Conclusions: This review presents an emerging body of evidence demonstrating that people with dementia are able to independently use touchscreen technology. The intuitive control method and adaptability of modern devices has driven the selection of this technology in studies. However, its primary use to date has been as a method to deliver assessments and screening tests or to provide an assistive function or cognitive rehabilitation. Building on the finding that people with dementia are able to use touchscreen technology and which design features facilitate this, more use could be made to deliver independent activities for meaningful occupation, entertainment, and fun.

  • Visualization of upper limb movement information from stroke patients for therapists. Image sourced and copyright owned by authors.

    How Therapists Use Visualizations of Upper Limb Movement Information From Stroke Patients: A Qualitative Study With Simulated Information


    Background: Stroke is a leading cause of disability worldwide, with upper limb deficits affecting an estimated 30% to 60% of survivors. The effectiveness of upper limb rehabilitation relies on numerous factors, particularly patient compliance to home programs and exercises set by therapists. However, therapists lack objective information about their patients’ adherence to rehabilitation exercises as well as other uses of the affected arm and hand in everyday life outside the clinic. We developed a system that consists of wearable sensor technology to monitor a patient’s arm movement and a Web-based dashboard to visualize this information for therapists. Objective: The aim of our study was to evaluate how therapists use upper limb movement information visualized on a dashboard to support the rehabilitation process. Methods: An interactive dashboard prototype with simulated movement information was created and evaluated through a user-centered design process with therapists (N=8) at a rehabilitation clinic. Data were collected through observations of therapists interacting with an interactive dashboard prototype, think-aloud data, and interviews. Data were analyzed qualitatively through thematic analysis. Results: Therapists use visualizations of upper limb information in the following ways: (1) to obtain objective data of patients’ activity levels, exercise, and neglect outside the clinic, (2) to engage patients in the rehabilitation process through education, motivation, and discussion of experiences with activities of daily living, and (3) to engage with other clinicians and researchers based on objective data. A major limitation is the lack of contextual data, which is needed by therapists to discern how movement data visualized on the dashboard relate to activities of daily living. Conclusions: Upper limb information captured through wearable devices provides novel insights for therapists and helps to engage patients and other clinicians in therapy. Consideration needs to be given to the collection and visualization of contextual information to provide meaningful insights into patient engagement in activities of daily living. These findings open the door for further work to develop a fully functioning system and to trial it with patients and clinicians during therapy.

  • Image Source: Tie Dye, copyright Tony Alter,, Licensed under Creative Commons Attribution cc-by 2.0

    Machine Learning to Improve Energy Expenditure Estimation in Children With Disabilities: A Pilot Study in Duchenne Muscular Dystrophy


    Background: Children with physical impairments are at a greater risk for obesity and decreased physical activity. A better understanding of physical activity pattern and energy expenditure (EE) would lead to a more targeted approach to intervention. Objective: This study focuses on studying the use of machine-learning algorithms for EE estimation in children with disabilities. A pilot study was conducted on children with Duchenne muscular dystrophy (DMD) to identify important factors for determining EE and develop a novel algorithm to accurately estimate EE from wearable sensor-collected data. Methods: There were 7 boys with DMD, 6 healthy control boys, and 22 control adults recruited. Data were collected using smartphone accelerometer and chest-worn heart rate sensors. The gold standard EE values were obtained from the COSMED K4b2 portable cardiopulmonary metabolic unit worn by boys (aged 6-10 years) with DMD and controls. Data from this sensor setup were collected simultaneously during a series of concurrent activities. Linear regression and nonlinear machine-learning–based approaches were used to analyze the relationship between accelerometer and heart rate readings and COSMED values. Results: Existing calorimetry equations using linear regression and nonlinear machine-learning–based models, developed for healthy adults and young children, give low correlation to actual EE values in children with disabilities (14%-40%). The proposed model for boys with DMD uses ensemble machine learning techniques and gives a 91% correlation with actual measured EE values (root mean square error of 0.017). Conclusions: Our results confirm that the methods developed to determine EE using accelerometer and heart rate sensor values in normal adults are not appropriate for children with disabilities and should not be used. A much more accurate model is obtained using machine-learning–based nonlinear regression specifically developed for this target population.

  • Teleexercise for persons with spinal cord injury using a custom Web application. image sourced and copyright owned by authors Byron Lai et al.

    Teleexercise for Persons With Spinal Cord Injury: A Mixed-Methods Feasibility Case Series


    Background: Spinal cord injury (SCI) results in significant loss of function below the level of injury, often leading to restricted participation in community exercise programs. To overcome commonly experienced barriers to these programs, innovations in technology hold promise for remotely delivering safe and effective bouts of exercise in the home. Objective: To test the feasibility of a remotely delivered home exercise program for individuals with SCI as determined by (1) implementation of the intervention in the home; (2) exploration of the potential intervention effects on aerobic fitness, physical activity behavior, and subjective well-being; and (3) acceptability of the program through participant self-report. Methods: Four adults with SCI (mean age 43.5 [SD 5.3] years; 3 males, 1 female; postinjury 25.8 [SD 4.3] years) completed a mixed-methods sequential design with two phases: an 8-week intervention followed by a 3-week nonintervention period. The intervention was a remotely delivered aerobic exercise training program (30-45 minutes, 3 times per week). Instrumentation included an upper body ergometer, tablet, physiological monitor, and custom application that delivered video feed to a remote trainer and monitored and recorded exercise data in real time. Implementation outcomes included adherence, rescheduled sessions, minutes of moderate exercise, and successful recording of exercise data. Pre/post-outcomes included aerobic capacity (VO2 peak), the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD), the Satisfaction with Life Scale (SWLS), and the Quality of Life Index modified for spinal cord injury (QLI-SCI). Acceptability was determined by participant perceptions of the program features and impact, assessed via qualitative interview at the end of the nonintervention phase. Results: Participants completed all 24 intervention sessions with 100% adherence. Out of 96 scheduled training sessions for the four participants, only 8 (8%) were makeup sessions. The teleexercise system successfully recorded 85% of all exercise data. The exercise program was well tolerated by all participants. All participants described positive outcomes as a result of the intervention and stated that teleexercise circumvented commonly reported barriers to exercise participation. There were no reported adverse events and no dropouts. Conclusion: A teleexercise system can be a safe and feasible option to deliver home-based exercise for persons with SCI. Participants responded favorably to the intervention and valued teleexercise for its ability to overcome common barriers to exercise. Study results are promising but warrant further investigation in a larger sample.

  • Image Source: Brain study-Ashley Livingstone, copyright Simon Fraser University,
Licensed under Creative Commons Attribution cc-by 2.0

    Systemic Lisbon Battery: Normative Data for Memory and Attention Assessments


    Background: Memory and attention are two cognitive domains pivotal for the performance of instrumental activities of daily living (IADLs). The assessment of these functions is still widely carried out with pencil-and-paper tests, which lack ecological validity. The evaluation of cognitive and memory functions while the patients are performing IADLs should contribute to the ecological validity of the evaluation process. Objective: The objective of this study is to establish normative data from virtual reality (VR) IADLs designed to activate memory and attention functions. Methods: A total of 243 non-clinical participants carried out a paper-and-pencil Mini-Mental State Examination (MMSE) and performed 3 VR activities: art gallery visual matching task, supermarket shopping task, and memory fruit matching game. The data (execution time and errors, and money spent in the case of the supermarket activity) was automatically generated from the app. Results: Outcomes were computed using non-parametric statistics, due to non-normality of distributions. Age, academic qualifications, and computer experience all had significant effects on most measures. Normative values for different levels of these measures were defined. Conclusions: Age, academic qualifications, and computer experience should be taken into account while using our VR-based platform for cognitive assessment purposes.

  • Image Source: Dementia, copyright deandare06,,
Licensed under Creative Commons Attribution cc-by 2.0

    Information and Communication Technologies in the Care of the Elderly: Systematic Review of Applications Aimed at Patients With Dementia and Caregivers


    Background: The interest in applying information and communications technology (ICT) in older adult health care is frequently promoted by the increasing and unsustainable costs of health care services. In turn, the unprecedented growth of the elderly population around the globe has urged institutions, companies, industries, and governments to respond to older adults’ medical needs. Objective: The aim of this review is to systematically identify the opportunities that ICT offers to health services, specifically for patients with dementia and their families. Methods: A systematic review of the literature about ICT applications that have been developed to assist patients with Alzheimer’s disease (AD) and their primary caregivers was conducted. The bibliographic search included works published between January 2005 and July 2015 in the databases Springer Link, Scopus, and Google Scholar. Of the published papers, 902 were obtained in the initial search, of which 214 were potentially relevant. Included studies fulfilled the following inclusion criteria: (1) studies carried out between the years of 2005 and 2015, (2) studies were published in English or Spanish, (3) studies with titles containing the keywords, (4) studies with abstracts containing information on ICT applications and AD, and (5) studies published in indexed journals, proceedings, and book chapters. Results: A total of 26 studies satisfied the inclusion criteria for the current review. Among them, 16 were aimed at the patient with AD and 10 at the primary caregivers and/or family members. The studies targeted applications that included assistive technology (44%, 7/16), telecare (37%, 6/16), and telemedicine (31%, 5/16). The information systems (56%, 9/16) and Internet (44%, 7/16) were the most commonly used enabling technologies for the studies. Finally, areas of attention more covered by the studies were care (56%, 9/16), treatment (56%, 9/16), and management (50%, 8/16). Furthermore, it was found that 20 studies (77%, 8/26) evaluated their ICT applications through carrying out tests with patients with dementia and caregivers. Conclusions: The key finding of this systematic review revealed that the use of ICT tools can be strongly recommended to be used as a lifestyle in the elderly in order to improve the quality of life for the elderly and their primary caregivers. Since patients with AD are completely dependent in most activities, it is necessary to give attention to their primary caregivers to avoid stress and depression. In addition, the use of ICT in the daily life of caregivers can help them understand the disease process and manage situations in a way that is beneficial for both parties. It is expected that future developments concerning technological projects can support this group of people.

  • This picture shows the position of the mobile phones, participant testing position (hands on the hips), and the foam board used for balance testing. Three identical mobile phones were utilized. The first phone was positioned so that its lower edge was above the talocrural joint line, the second so its lower edge was above the superior midline of the patella, and the last so its center was at the level of the subject’s umbilicus. All subjects wore shorts and a t-shirt with no shoes or socks, as depicted.

    Novel Use of a Smartphone to Measure Standing Balance


    Background: Balance assessment and training is utilized by clinicians and their patients to measure and improve balance. There is, however, little consistency in terms of how clinicians, researchers, and patients measure standing balance. Utilizing the inherent sensors in every smartphone, a mobile application was developed to provide a method of objectively measuring standing balance. Objective: We aimed to determine if a mobile phone application, which utilizes the phone’s accelerometer, can quantify standing balance. Methods: Three smartphones were positioned simultaneously above the participants’ malleolus and patella and at the level of the umbilicus. Once secured, the myAnkle application was initiated to measure acceleration. Forty-eight participants completed 8 different balance exercises separately for the right and left legs. Accelerometer readings were obtained from each mobile phone and mean acceleration was calculated for each exercise at each ankle and knee and the torso. Results: Mean acceleration vector magnitude was reciprocally transformed to address skewness in the data distribution. Repeated measures ANOVAs were completed using the transformed data. A significant 2-way interaction was revealed between exercise condition and the body position of the phone (P<.001). Post-hoc tests indicated higher acceleration vector magnitude for exercises of greater difficulty. ANOVAs at each body position were conducted to examine the effect of exercise. The results revealed the knee as the location most sensitive for the detection of differences in acceleration between exercises. The accelerometer ranking of exercise difficulty showed high agreement with expert clinical rater rankings (kappa statistic>0.9). Conclusions: The myAnkle application revealed significantly greater acceleration magnitude for exercises of greater difficulty. Positioning of the mobile phone at the knee proved to be the most sensitive to changes in accelerometer values due to exercise difficulty. Application validity was shown through comparison with clinical raters. As such, the myAnkle app has utility as a measurement tool for standing balance.

  • Disabled man in a wheelchair.

Image copyright: SWNS
Source URL:

    Communications Technology and Motor Neuron Disease: An Australian Survey of People With Motor Neuron Disease


    Background: People with Motor Neuron Disease (MND), of which amyotrophic lateral sclerosis (ALS) is the most common form in adults, typically experience difficulties with communication and disabilities associated with movement. Assistive technology is essential to facilitate everyday activities, promote social support and enhance quality of life. Objective: This study aimed to explore the types of mainstream and commonly available communication technology used by people with MND including software and hardware, to identify the levels of confidence and skill that people with MND reported in using technology, to determine perceived barriers to the use of technology for communication, and to investigate the willingness of people with MND to adopt alternative modes of communication. Methods: An on-line survey was distributed to members of the New South Wales Motor Neuron Disease Association (MND NSW). Descriptive techniques were used to summarize frequencies of responses and cross tabulate data. Free-text responses to survey items and verbal comments from participants who chose to undertake the survey by telephone were analyzed using thematic analysis. Results: Responses from 79 MND NSW members indicated that 15-21% had difficulty with speaking, writing and/or using a keyboard. Commonly used devices were desktop computers, laptops, tablets and mobile phones. Most participants (84%) were connected to the Internet and used it for email (91%), to find out more about MND (59%), to follow the news (50%) or for on-line shopping (46%). A third of respondents used Skype or its equivalent, but few used this to interact with health professionals. Conclusions: People with MND need greater awareness of technology options to access the most appropriate solutions. The timing for people with MND to make decisions about technology is critical. Health professionals need skills and knowledge about the application of technology to be able to work with people with MND to select the best communication technology options as early as possible after diagnosis. If people with MND are willing to trial telehealth technology, there is potential for tele-consultations via Skype or its equivalent, with health professionals. People with MND can benefit from health professional involvement to match technology to their functional limitations and personal preferences. However, health professionals need a comprehensive understanding of the application of available technology to achieve this.

  • Image created by corresponding author, Paula van Wyk. Copyright 2016.

    Community-Based Hip Fracture Rehabilitation Interventions for Older Adults With Cognitive Impairment: A Systematic Review


    Background: A hip fracture in older adulthood can result in function and mobility decline. The consequences are debilitating and place a great burden on patients, caregivers, and the health care system. Although inpatient rehabilitation programs have proven effective, the best practices for community-based rehabilitation required to maintain the gains in function and mobility post hospital discharge are currently unknown. Objective: The aim of this systematic review is to identify and evaluate the evidence on the effectiveness of community-based rehabilitation post hospital discharge interventions for older adults with cognitive impairment (CI) following a hip fracture, and to identify the physical recovery outcomes and measures used in previous studies. Methods: The methods outlined in the Cochrane Handbook for Systematic Reviews of Intervention were followed and findings were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search strategy included a combination of text words and subject headings relating to the concepts of CI, dementia, delirium, cognitive reserve, and hip fractures. For a study to be included in the review, it had to involve participants with CI who underwent hip fracture surgery, and consisted of an outpatient intervention that occurred in the participant’s home or community. Peer-reviewed journal articles were identified by searching various databases. Two independent reviewers screened the titles and abstracts to determine which articles comprising of a rehabilitation intervention within a community setting prior to being included for a full article review. A data extraction form and an evidence and quality checklist were used during the full article data analysis and synthesis. A meta-analysis was not conducted due to heterogeneity of measures and outcomes. Results: The original search resulted in over 3000 articles. Of those, three studies satisfied the necessary criteria to be included in the systematic review. All studies included inpatient and outpatient physiotherapy, with some including a cognitive component, family education, and a discharge assessment. Conclusions: The findings from this review suggest that community-based rehabilitation post hospital discharge interventions show promising results towards improving various physical function outcomes, mobility, and activities of daily living for older adults with CI following a hip fracture. This review also demonstrates and discusses the current lack of outpatient rehabilitation interventions targeted towards older adults with CI post-hip fracture. Additionally, several substantive gaps that require attention to move this field forward are highlighted.

  • The PSMrS home hub for stroke survivors with insole and data logger providing walking feedback through the PSMrS.

    A Personalized Self-Management Rehabilitation System with an Intelligent Shoe for Stroke Survivors: A Realist Evaluation


    Background: In the United Kingdom, stroke is the most significant cause of adult disability. Stroke survivors are frequently left with physical and psychological changes that can profoundly affect their functional ability, independence, and social participation. Research suggests that long-term, intense, task- and context-specific rehabilitation that is goal-oriented and environmentally enriched improves function, independence, and quality of life after a stroke. It is recommended that rehabilitation should continue until maximum recovery has been achieved. However, the increasing demand on services and financial constraints means that needs cannot be met through traditional face-to-face delivery of rehabilitation. Using a participatory design methodology, we developed an information communication technology–enhanced Personalized Self-Managed rehabilitation System (PSMrS) for stroke survivors with integrated insole sensor technology within an “intelligent shoe.”. The intervention model was based around a rehabilitation paradigm underpinned by theories of motor relearning and neuroplastic adaptation, motivational feedback, self-efficacy, and knowledge transfer. Objective: To understand the conditions under which this technology-based rehabilitation solution would most likely have an impact on the motor behavior of the user, what would work for whom, in what context, and how. We were interested in what aspects of the system would work best to facilitate the motor behavior change associated with self-managed rehabilitation and which user characteristics and circumstances of use could promote improved functional outcomes. Methods: We used a Realist Evaluation (RE) framework to evaluate the final prototype PSMrS with the assumption that the intervention consists of a series of configurations that include the Context of use, the underlying Mechanisms of change and the potential Outcomes or impacts (CMOs). We developed the CMOs from literature reviews and engagement with clinicians, users, and caregivers during a series of focus groups and home visits. These CMOs were then tested in five in-depth case studies with stroke survivors and their caregivers. Results: While two new propositions emerged, the second importantly related to the self-management aspects of the system. The study revealed that the system should also encourage independent use and the setting of personalized goals or activities. Conclusions: Information communication technology that purports to support the self-management of stroke rehabilitation should give significant consideration to the need for motivational feedback that provides quantitative, reliable, accurate, context-specific, and culturally sensitive information about the achievement of personalized goal-based activities.

  • MedExercise under-desk system used for concurrent leg training, while working with computer at the desk (image was created by the author and is open source).

    Automated Management of Exercise Intervention at the Point of Care: Application of a Web-Based Leg Training System


    Background: Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. Objective: In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. Methods: The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Results: Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants’ heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with automatic email alerts sent upon achieving them. During 1-week training at home, automatic notifications were received on 4.4 days (SD 1.8). Although the high intensity interval training regimen was feasible on-site, it was difficult for self- and remote management. Opportunistic leg exercise under the desk, while working with a computer, and training in bed while viewing television were less intensive than dosed exercise bouts, but allowed prolonged leg mobilization of 73.7 minutes/day (SD 29.7). Conclusions: This study demonstrated the feasibility of self-control exercise training on-site, which was accompanied by online monitoring, electronic recording, personalization of exercise doses, and automatic reporting of adherence. The results suggest that this technology and its applications are useful for the delivery of Web-based exercise rehabilitation and cardiac training programs at the point of care.

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)