JMIR Publications

JMIR Rehabilitation and Assistive Technologies

Focussing on development and evaluation of rehabilitation and cyborg technologies


Recent Articles:

  • MedExercise under-desk system used for concurrent leg training, while working with computer at the desk (image was created by the author and is open source).

    Automated Management of Exercise Intervention at the Point of Care: Application of a Web-Based Leg Training System


    Background: Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. Objective: In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. Methods: The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Results: Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants’ heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with automatic email alerts sent upon achieving them. During 1-week training at home, automatic notifications were received on 4.4 days (SD 1.8). Although the high intensity interval training regimen was feasible on-site, it was difficult for self- and remote management. Opportunistic leg exercise under the desk, while working with a computer, and training in bed while viewing television were less intensive than dosed exercise bouts, but allowed prolonged leg mobilization of 73.7 minutes/day (SD 29.7). Conclusions: This study demonstrated the feasibility of self-control exercise training on-site, which was accompanied by online monitoring, electronic recording, personalization of exercise doses, and automatic reporting of adherence. The results suggest that this technology and its applications are useful for the delivery of Web-based exercise rehabilitation and cardiac training programs at the point of care.

  • Screen capture from Reflexion Health (The image was created by the authors as part of the Stand Tall program).

    Are Virtual Rehabilitation Technologies Feasible Models to Scale an Evidence-Based Fall Prevention Program? A Pilot Study Using the Kinect Camera


    Background: Falls in older adults are a significant public health issue. Interventions have been developed and proven effective to reduce falls in older adults, but these programs typically last several months and can be resource intensive. Virtual rehabilitation technologies may offer a solution to bring these programs to scale. Off-the-shelf and custom exergames have demonstrated to be a feasible adjunct to rehabilitation with older adults. However, it is not known if older adults will be able or willing to use a virtual rehabilitation technology to participate in an evidence-based fall prevention program. To have the greatest impact, virtual rehabilitation technologies need to be acceptable to older adults from different backgrounds and level of fall risk. If these technologies prove to be a feasible option, they offer a new distribution channel to disseminate fall prevention programs. Objective: Stand Tall (ST) is a virtual translation of the Otago Exercise Program (OEP), an evidence-based fall prevention program. Stand Tall was developed using the Virtual Exercise Rehabilitation Assistant (VERA) software, which uses a Kinect camera and a laptop to deliver physical therapy exercise programs. Our purpose in this pilot study was to explore if ST could be a feasible platform to deliver the OEP to older adults from a variety of fall risk levels, education backgrounds, and self-described level of computer expertise. Methods: Adults age 60 and over were recruited to participate in a one-time usability study. The study included orientation to the program, navigation to exercises, and completion of a series of strength and balance exercises. Quantitative analysis described participants and the user experience. Results: A diverse group of individuals participated in the study. Twenty-one potential participants (14 women, 7 men) met the inclusion criteria. The mean age was 69.2 (± 5.8) years, 38% had a high school education, 24% had a graduate degree, and 66% classified as “at risk for falls”. Eighteen participants agreed they would like to use ST to help improve their balance, and 17 agreed or strongly agreed they would feel confident using the system in either the senior center or the home. Thirteen participants felt confident they could actually set up the system in their home. The mean System Usability Scale (SUS) score was 65.5 ± 21.2 with a range of 32.5 to 97.5. Ten participants scored ST as an above average usability experience compared to other technologies and 5 participants scored a less than optimal experience. Exploratory analysis revealed no significant relationships between user experience, education background, self-described computer experience, and fall risk. Conclusions: Results support the virtual delivery of the OEP by a Kinect camera and an avatar may be acceptable to older adults from a variety of backgrounds. Virtual technologies, like Stand Tall, could offer an efficient and effective approach to bring evidence-based fall prevention programs to scale to address the problem of falls and fall-related injuries. Next steps include determining if similar or better outcomes are achieved by older adults using the virtual OEP, Stand Tall, compared to the standard of care.

  • (cc) CC-BY 2.0 (

    Disease Profiling for Computerized Peer Support of Ménière's Disease


    Background: Peer support is an emerging form of person-driven active health care. Chronic conditions such as Ménière’s disease (a disorder of the inner ear) need continuing rehabilitation and support that is beyond the scope of routine clinical medical practice. Hence, peer-support programs can be helpful in supplementing some of the rehabilitation aspects. Objective: The aim of this study was to design a computerized data collection system for the peer support of Menière’s disease that is capable in profiling the subject for diagnosis and in assisting with problem solving. Methods: The expert program comprises several data entries focusing on symptoms, activity limitations, participation restrictions, quality of life, attitude and personality trait, and an evaluation of disease-specific impact. Data was collected from 740 members of the Finnish Ménière’s Federation and utilized in the construction and evaluation of the program. Results: The program verifies the diagnosis of a person by using an expert system, and the inference engine selects 50 cases with matched symptom severity by using a nearest neighbor algorithm. These cases are then used as a reference group to compare with the person’s attitude, sense of coherence, and anxiety. The program provides feedback for the person and uses this information to guide the person through the problem-solving process. Conclusions: This computer-based peer-support program is the first example of an advanced computer-oriented approach using artificial intelligence, both in the profiling of the disease and in profiling the person’s complaints for hearing loss, tinnitus, and vertigo.

  • Wii-fit. Image Source: (c) Nintendo (fair use).

    Interchangeability of the Wii Balance Board for Bipedal Balance Assessment


    Background: Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. Objective: The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. Methods: A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Results: Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Conclusions: Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Trial Registration: Ethical Committee of the Erasme Hospital (CCB B406201215142).

  • Squat jump starting position.

    Mobile Jump Assessment (mJump): A Descriptive and Inferential Study


    Background: Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. Objective: The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. Methods: A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone’s inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. Results: In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. Conclusions: The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration kinematics variables derived from the smartphone’s inertial sensor are higher in the countermovement jump test than the squat jump test.

  • Position of the inertial sensors on the back of patients.

    Mobile Functional Reach Test in People Who Suffer Stroke: A Pilot Study


    Background: Postural instability is one of the major complications found in people who survive a stroke. Parameterizing the Functional Reach Test (FRT) could be useful in clinical practice and basic research, as this test is a clinically accepted tool (for its simplicity, reliability, economy, and portability) to measure the semistatic balance of a subject. Objective: The aim of this study is to analyze the reliability in the FRT parameterization using inertial sensor within mobile phones (mobile sensors) for recording kinematic variables in patients who have suffered a stroke. Our hypothesis is that the sensors in mobile phones will be reliable instruments for kinematic study of the FRT. Methods: This is a cross-sectional study of 7 subjects over 65 years of age who suffered a stroke. During the execution of FRT, the subjects carried two mobile phones: one placed in the lumbar region and the other one on the trunk. After analyzing the data obtained in the kinematic registration by the mobile sensors, a number of direct and indirect variables were obtained. The variables extracted directly from FRT through the mobile sensors were distance, maximum angular lumbosacral/thoracic displacement, time for maximum angular lumbosacral/thoracic displacement, time of return to the initial position, and total time. Using these data, we calculated speed and acceleration of each. A descriptive analysis of all kinematic outcomes recorded by the two mobile sensors (trunk and lumbar) was developed and the average range achieved in the FRT. Reliability measures were calculated by analyzing the internal consistency of the measures with 95% confidence interval of each outcome variable. We calculated the reliability of mobile sensors in the measurement of the kinematic variables during the execution of the FRT. Results: The values in the FRT obtained in this study (2.49 cm, SD 13.15) are similar to those found in other studies with this population and with the same age range. Intrasubject reliability values observed in the use of mobile phones are all located above 0.831, ranging from 0.831 (time B_C trunk area) and 0.894 (displacement A_B trunk area). Likewise, the observed intersubject values range from 0.835 (time B_C trunk area) and 0.882 (displacement A_C trunk area). On the other hand, the reliability of the FRT was 0.989 (0.981-0.996) and 0.978 (0.970-0.985), intrasubject and intersubject respectively. Conclusions: We found that mobile sensors in mobile phones could be reliable tools in the parameterization of the Functional Reach Test in people who have had a stroke.

  • Smart insole.

    A Smart Insole to Promote Healthy Aging for Frail Elderly Individuals: Specifications, Design, and Preliminary Results


    Background: Older individuals frequently experience reversible “frailty syndrome,”, increasing incidence of disability. Although physical exercise interventions may delay functional decline, there are difficulties in implementing them and performing seamless follow-up at home. Very few technological solutions attempt to address this challenge and improve individual participation. Objective: Our objectives are to (1) develop a technological solution designed to support active aging of frail older persons, (2) conduct a first laboratory evaluation of the device, and (3) design a multidimensional clinical trial to validate our solution. Methods: We conducted a first phase of multidisciplinary meetings to identify real end users and health professional’s unmet needs, and to produce specifications for the architecture of the solution. In a second phase, we performed laboratory tests of the first proposed prototype (a smart insole) with 3 healthy volunteers. We then designed an ongoing clinical trial to finalize the multidimensional evaluation and improvement of the solution. Results: To respond to the needs expressed by the stakeholders (frailty monitoring and adherence improvement), we developed a prototype of smart shoe insole to monitor key parameters of frailty during daily life and promote walking. It is a noninvasive wireless insole, which automatically measures gait parameters and transmits information to a remote terminal via a secure Internet connection. To ensure the solution’s autonomy and transparency, we developed an original energy harvesting system, which transforms mechanical energy produced by the user’s walking movement into electrical energy. The first laboratory tests of this technological solution showed good reliability measures and also a good acceptability for the users. We have planned an original iterative medical research protocol to validate our solution in real life. Conclusions: Our smart insole could support preventive strategies against disability in primary care by empowering the older patients without increasing the busy health professional’s workload. Trial Registration: NCT02316600; Accessed: 2015-05-13 . (Archived by WebCite at

  • iPhone 4 on subject.

    Studying Upper-Limb Kinematics Using Inertial Sensors Embedded in Mobile Phones


    Background: In recent years, there has been a great interest in analyzing upper-limb kinematics. Inertial measurement with mobile phones is a convenient and portable analysis method for studying humerus kinematics in terms of angular mobility and linear acceleration. Objective: The aim of this analysis was to study upper-limb kinematics via mobile phones through six physical properties that correspond to angular mobility and acceleration in the three axes of space. Methods: This cross-sectional study recruited healthy young adult subjects. Humerus kinematics was studied in 10 young adults with the iPhone4. They performed flexion and abduction analytical tasks. Mobility angle and lineal acceleration in each of its axes (yaw, pitch, and roll) were obtained with the iPhone4. This device was placed on the right half of the body of each subject, in the middle third of the humerus, slightly posterior. Descriptive statistics were calculated. Results: Descriptive graphics of analytical tasks performed were obtained. The biggest range of motion was found in pitch angle, and the biggest acceleration was found in the y-axis in both analytical tasks. Focusing on tridimensional kinematics, bigger range of motion and acceleration was found in abduction (209.69 degrees and 23.31 degrees per second respectively). Also, very strong correlation was found between angular mobility and linear acceleration in abduction (r=.845) and flexion (r=.860). Conclusions: The use of an iPhone for humerus tridimensional kinematics is feasible. This supports use of the mobile phone as a device to analyze upper-limb kinematics and to facilitate the evaluation of the patient.

  • Tablet and mounting platform for in-chair training.

    Rehab on Wheels: A Pilot Study of Tablet-Based Wheelchair Training for Older Adults


    Background: Alternative and innovative strategies such as mHealth and eLearning are becoming a necessity for delivery of rehabilitation services. For example, older adults who require a wheelchair receive little, if any, training for proficiency with mobility skills. This substantive service gap is due in part to restricted availability of clinicians and challenges for consumers to attend appointments. A research team of occupational therapists and computer scientists engaged clinicians, consumers, and care providers using a participatory action design approach. A tablet-based application, Enhancing Participation In the Community by improving Wheelchair Skills (EPIC Wheels), was developed to enable in-chair home training, online expert trainer monitoring, and trainee-trainer communication via secure voice messaging. Objective: Prior to undertaking a randomized controlled trial (RCT), a pilot study was conducted to determine the acceptability and feasibility of administering an mHealth wheelchair skills training program safely and effectively with two participants of different skill levels. The findings were used to determine whether further enhancements to the program were indicated. Methods: The program included two in-person sessions with an expert trainer and four weeks of independent home training. The EPIC Wheels application included video instruction and demonstration, self-paced training activities, and interactive training games. Participants were provided with a 10-inch Android tablet, mounting apparatus, and mobile Wi-Fi device. Frequency and duration of tablet interactions were monitored and uploaded daily to an online trainer interface. Participants completed a structured evaluation survey and provided feedback post-study. The trainer provided feedback on the training protocol and trainer interface. Results: Both participants perceived the program to be comprehensive, useful, and easily navigated. The trainer indicated usage data was comprehensive and informative for monitoring participant progress and adherence. The application performed equally well with multiple devices. Some initial issues with log-in requests were resolved via tablet-specific settings. Inconsistent Internet connectivity, resulting in delayed data upload and voice messaging, was specific to individual Wi-Fi devices and resolved by standardizing configuration. Based on the pilot results, the software was updated to make content download more robust. Additional features were also incorporated such as check marks for completed content, a more consumer-friendly aesthetic, and achievement awards. The trainer web interface was updated to improve usability and provides both a numerical and visual summary of participant data. Conclusions: The EPIC Wheels pilot study provided useful feedback on the feasibility of a tablet-based home program for wheelchair skills training among older adults, justifying advancement to evaluation in an RCT. The program may be expanded for use with other rehabilitation interventions and populations, particularly for those living in rural or remote locations. Future development will consider integration of built-in tablet sensors to provide performance feedback and enable interactive training activities. Trial Registration: NCT01644292; (Archived by WebCite at

  • Zephyr BioHarness.

    Measurement and Data Transmission Validity of a Multi-Biosensor System for Real-Time Remote Exercise Monitoring Among Cardiac Patients


    Background: Remote telemonitoring holds great potential to augment management of patients with coronary heart disease (CHD) and atrial fibrillation (AF) by enabling regular physiological monitoring during physical activity. Remote physiological monitoring may improve home and community exercise-based cardiac rehabilitation (exCR) programs and could improve assessment of the impact and management of pharmacological interventions for heart rate control in individuals with AF. Objective: Our aim was to evaluate the measurement validity and data transmission reliability of a remote telemonitoring system comprising a wireless multi-parameter physiological sensor, custom mobile app, and middleware platform, among individuals in sinus rhythm and AF. Methods: Participants in sinus rhythm and with AF undertook simulated daily activities, low, moderate, and/or high intensity exercise. Remote monitoring system heart rate and respiratory rate were compared to reference measures (12-lead ECG and indirect calorimeter). Wireless data transmission loss was calculated between the sensor, mobile app, and remote Internet server. Results: Median heart rate (-0.30 to 1.10 b∙min-1) and respiratory rate (-1.25 to 0.39 br∙min-1) measurement biases were small, yet statistically significant (all P≤.003) due to the large number of observations. Measurement reliability was generally excellent (rho=.87-.97, all P<.001; intraclass correlation coefficient [ICC]=.94-.98, all P<.001; coefficient of variation [CV]=2.24-7.94%), although respiratory rate measurement reliability was poor among AF participants (rho=.43, P<.001; ICC=.55, P<.001; CV=16.61%). Data loss was minimal (<5%) when all system components were active; however, instability of the network hosting the remote data capture server resulted in data loss at the remote Internet server during some trials. Conclusions: System validity was sufficient for remote monitoring of heart and respiratory rates across a range of exercise intensities. Remote exercise monitoring has potential to augment current exCR and heart rate control management approaches by enabling the provision of individually tailored care to individuals outside traditional clinical environments.

  • (cc) Lam et al. CC-BY-SA-2.0, please cite as (

    Perceptions of Technology and Its Use for Therapeutic Application for Individuals With Hemiparesis: Findings From Adult and Pediatric Focus Groups


    Background: Digital technology is becoming an increasingly popular means of delivering meaningful therapy to individuals with neurological impairments. An understanding of clients’ technology use and their perspectives on incorporating technology into rehabilitation can provide researchers and designers with valuable information to inform development of technologies and technology-based rehabilitation programs. Objective: This study was designed to establish the current use and perceptions of gaming, social media, and robotics technologies for rehabilitative purposes from the perspective of adults and children with upper limb impairments to identify barriers and enablers to their adoption and use. Methods: We conducted three focus groups consisting of pediatric (n=7, mean age 11.0 years) and adult (n=8, mean age 60.8 years) participants with hemiparesis affecting their upper limb. We applied thematic analysis methods to the resulting data. Results: We identified three key themes: (1) clients’ use of technology in everyday life and rehabilitation, (2) barriers to use, and (3) enablers to therapy. Participants had limited exposure to technology for therapeutic purposes, but all acknowledged the potential benefits in providing motivation and interest for the performance of repetitive task practice. Adult participants requested efficacious, simple, and easy-to-use technology for rehabilitation with programs that could be individualized for them and expressed that they wanted these programs to provide a motivating means of repeated practice of therapeutic movements. In contrast, pediatric participants emphasized a desire for technology for rehabilitation that offered opportunities for social interaction and interactive games involving their whole body and not only their affected limb. Perceived safety and privacy were concerns for both groups. Conclusions: Our findings highlight that all participants were open to the integration of technology into rehabilitation. Adult participants were more pragmatically motivated by potential recovery gains, whereas pediatric participants were more intrinsically motivated by access to games.

  • Rehabilitation through serious interactive games.

    THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children


    Background: Neurorehabilitation therapies exploiting the use-dependent plasticity of our neuromuscular system are devised to help patients who suffer from injuries or diseases of this system. These therapies take advantage of the fact that the motor activity alters the properties of our neurons and muscles, including the pattern of their connectivity, and thus their functionality. Hence, a sensor-motor treatment where patients makes certain movements will help them (re)learn how to move the affected body parts. But these traditional rehabilitation processes are usually repetitive and lengthy, reducing motivation and adherence to the treatment, and thus limiting the benefits for the patients. Objective: Our goal was to create innovative neurorehabilitation therapies based on THERAPIST, a socially assistive robot. THERAPIST is an autonomous robot that is able to find and execute plans and adapt them to new situations in real-time. The software architecture of THERAPIST monitors and determines the course of action, learns from previous experiences, and interacts with people using verbal and non-verbal channels. THERAPIST can increase the adherence of the patient to the sessions using serious games. Data are recorded and can be used to tailor patient sessions. Methods: We hypothesized that pediatric patients would engage better in a therapeutic non-physical interaction with a robot, facilitating the design of new therapies to improve patient motivation. We propose RoboCog, a novel cognitive architecture. This architecture will enhance the effectiveness and time-of-response of complex multi-degree-of-freedom robots designed to collaborate with humans, combining two core elements: a deep and hybrid representation of the current state, own, and observed; and a set of task-dependent planners, working at different levels of abstraction but connected to this central representation through a common interface. Using RoboCog, THERAPIST engages the human partner in an active interactive process. But RoboCog also endows the robot with abilities for high-level planning, monitoring, and learning. Thus, THERAPIST engages the patient through different games or activities, and adapts the session to each individual. Results: RoboCog successfully integrates a deliberative planner with a set of modules working at situational or sensorimotor levels. This architecture also allows THERAPIST to deliver responses at a human rate. The synchronization of the multiple interaction modalities results from a unique scene representation or model. THERAPIST is now a socially interactive robot that, instead of reproducing the phrases or gestures that the developers decide, maintains a dialogue and autonomously generate gestures or expressions. THERAPIST is able to play simple games with human partners, which requires humans to perform certain movements, and also to capture the human motion, for later analysis by clinic specialists. Conclusions: The initial hypothesis was validated by our experimental studies showing that interaction with the robot results in highly attentive and collaborative attitudes in pediatric patients. We also verified that RoboCog allows the robot to interact with patients at human rates. However, there remain many issues to overcome. The development of novel hands-off rehabilitation therapies will require the intersection of multiple challenging directions of research that we are currently exploring.

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)